
Escola de Engenharia

Informatics Department

Master in Informatics Engineering

Dissertation

Comment Analysis for Program Comprehension

José Luís Figueiredo de Freitas

Supervised by:

Pedro Rangel Henriques, Universidade do Minho
Daniela da Cruz, Universidade do Minho

Braga, October 2011

Abstract

The constant demanding, mostly from Software Maintenance professionals, so that it could be
created new and more efficient methods of understanding programs, have put several challenges
to Program Comprehension researchers. Nowadays, the programmers are not satisfied with the
simple extraction of the program's structure, which mainly resides on the control and dataflow
identification. They want to know the meaning of the program, so they can identify the real world
concepts that are materialized on the source code of the program, which would provide a better and
more efficient understanding of the program.

To solve this problem, ProgramComprehension researchers have, mainly, developed approaches
that use techniques which are based on Information Retrieval Systems, like search engines. The
strategy involves the retrieval of non structured information, properly ranked, answering a question
the system can interpret. Considering Program Comprehension, this strategy enables the program-
mers to search for real world concepts, also known as Problem Domain, implemented and mapped
into programming concepts, also known as Program Domain.

Although its use is not consensual, source code comments have the main objective of helping
understand the source code, and it has already been proven its value on the process of comprehend-
ing, through several studies. Even though the reasons for this fact have not yet been proved, some
authors have defended that source code comments are an important vehicle for the inclusion of
Problem Domain information and that their exploration improves and increases the comprehension
process.

Therefore, the presenting Master Dissertation exposes the development of a solution based on
Information Retrieval algorithms, based on Information Retrieval Systems, in order to check if, in fact,
the information included in comments can contribute in a decisive way to increase the efficiency of
the comprehension process of a given program or software system.

The results and conclusions, extracted from this work, showed that comments, properly ana-
lyzed and classified by the developed system, helped to better understand the Problem Domain
concepts and their materialization on the source code. The developed solution showed itself able of
meeting the challenges posed, and proved to be a usefull and efficient tool for the comprehension
tasks that may emerge on the process of software maintence of a system.

i

ii

Resumo

As constantes exigências, principalmente vindas dos profissionais envolvidos na manutenção de
software, para que sejam encontradas novos e mais eficientes métodos para entender programas,
têm posto variadíssimos desafios aos investigadores na área de Compreensão de Programas. Atu-
almente, os programadores não ficam satisfeitos com a simples extração da estrutura do programa,
que passa pela identificação principalmente do controlo e do fluxo de dados do programa. Eles que-
rem saber qual a semântica do programa, de maneira a poderem identificar os conceitos do mundo
real que estão materializados no código fonte do programa, o que proporcionaria uma melhor e
mais eficiente compreensão do programa.

Para resolver este problema, os investigadores da área de Compreensão de Programas têm,
maioritariamente, criado abordagens que utilizam técnicas baseadas nos sistemas de Information
Retrieval, como os motores de busca. A estratégia passa por retornar informação, não estructurada,
devidamente classificada, respondida a uma pergunta que o sistema consegue interpretar. Em
relação à Compreensão de Programas, esta estratégia permite aos programadores procurarem
os conceitos do mundo real, também conhecido como Domínio do Problema, implementados e
mapeados em conceitos da programação, também conhecido como Domínio da Programação.

Apesar da sua utilização não ser consensual, os comentários no código fonte têm o principal
objetivo de ajudar a compreender o código, e já foi provado a sua utilidade no processo de compre-
ensão através de vários estudos. Apesar de ainda não ter sido provada o porquê deste facto, alguns
autores têm defendido que os comentários são um importante veículo na inclusão de informação
do Domínio do Problema do programa e que a sua exploração melhora e aumenta a eficiência do
processo de compreensão.

Sendo assim, a presente Dissertação de Mestrado expõe o desenvolvimento de uma solução
baseado nos algoritmos de Information Retrieval, baseados nos sistemas de Information Retrieval,
de maneira a tentar perceber se, de facto, a informação contida nos comentários conseguem
contribuir de forma decisiva para aumentar a eficiência do processo de compreensão de um dado
programa ou sistema de software.

Os resultados e conclusões retirados deste trabalho mostraram que os comentários, devida-
mente analisados e classificados pelo sistema desenvolvido, ajudaram a perceber devidamente os
conceitos do Domínio do Problema e as suas materializações no código fonte. A solução criada
mostrou-se capaz de responder aos desafios lançados, e provou ser uma ferramenta útil e eficiente
para as tarefas de compreensão que possam surgir no processo de manutenção de software.

iii

iv

Acknowledgements

First of all, I would like to thank Professor Pedro Rangel Henriques and Professor Daniela da Cruz
for all the help and advices given throughout this year. It would not have been possible to create
this work without that essential contribution.

I would also like to thank my parents, António Freitas and Helena Figueiredo, and my brother,
João Freitas, for providing all the support needed to overcome this difficult, but important year of
my life. The acknowledgments extend to the rest of the family.

Last but not least, the most important acknowledgment goes for my girlfriend, Bruna Ferreira.
You always said the right word at the right moment, which gave me strength to carry on, and
prevented me to fail or give up. You always understood the importance of this work in my life and
supported me every day throughout this year. This dissertation is dedicated to you.

v

vi

Contents

List of Figures x

List of Tables xi

List of Equations xii

Listings xii

Acronyms xiii

I Introduction 1

1 Introduction 2
1.1 Overview . 2
1.2 The Problem . 4
1.3 Goals to Achieve . 6
1.4 Outline . 7

II Program Comprehension 9

2 Program Comprehension 10
2.1 Mental Model . 12
2.2 Static elements of the Mental Model . 12

2.2.1 Text structure . 12
2.2.2 Chunks . 13
2.2.3 Plans . 13
2.2.4 Hypotheses . 13

2.3 Dynamic elements of the Mental Model . 14
2.3.1 Chunking . 14
2.3.2 Cross-referencing . 14

2.4 Cognitive enablers of the Mental Model . 15
2.4.1 Beacons . 15
2.4.2 Rules of discourse . 15

2.5 Knowledge Domains . 15
2.5.1 Ontology . 15
2.5.2 Problem Domain . 16
2.5.3 Program Domain . 17

2.6 Cognitive Model . 17

vii

Comment Analysis for Program Comprehension

2.6.1 Brooks model . 18
2.6.2 Soloway and Ehrlich model . 18
2.6.3 Shneiderman and Mayer model . 18
2.6.4 Pennington model . 19
2.6.5 Letovsky model . 19
2.6.6 Soloway, Adelson and Ehrlich model 20
2.6.7 von Mayrhauser and Vans model . 20

2.7 Program Comprehension tools . 20
2.8 Summary . 24

3 Information Retrieval for Program Comprehension 26
3.1 Information Retrieval . 27

3.1.1 The Information Retrieval Process . 28
3.1.2 Vector Space Model . 30
3.1.3 Latent Semantic Indexing . 30
3.1.4 Probabilistic Latent Semantic Indexing 32
3.1.5 Latent Dirichlet Allocation . 33

3.2 Information Retrieval For Program Comprehension 33
3.3 Summary . 37

III Comment Analysis for Program Comprehension 39

4 Source Code Comments 40
4.1 Types . 41
4.2 Content . 42
4.3 Comments and Language . 44
4.4 Comments and Program Size . 45
4.5 Comment Density and Practice . 45
4.6 Summary . 46

5 Comment Analysis For Program Comprehension 48
5.1 The role of comments on Program Comprehension 48
5.2 Comment Analysis Program Comprehension tools 50
5.3 Summary . 51

IV Darius 52

6 Darius: The first stage 53
6.1 The Preliminary Study . 54

6.1.1 Comment Quantity . 54
6.1.2 Comment Content . 55

6.2 Darius: Version One . 56
6.2.1 Extracting and Locating Comments 57
6.2.2 Comment Statistics . 59
6.2.3 Comment Words Analyzer . 60
6.2.4 Graphical Interface . 61

viii

CONTENTS

6.3 Tests: Preliminary Study . 64
6.3.1 Objects of Study . 66
6.3.2 Comment Quantity . 66
6.3.3 Comment Content . 70
6.3.4 Discussion of the results . 76

6.4 Summary . 77

7 Darius: The second stage 79
7.1 Darius: Version Two . 80

7.1.1 Document Database or Corpus Implementation 81
7.1.2 Vector Space Model Implementation 82
7.1.3 Latent Semantic Analysis Implementation 83
7.1.4 Graphical Interface . 84

7.2 Test . 86
7.2.1 iText . 87
7.2.2 Concept Location . 87
7.2.3 Discussion of the results . 96

7.3 Summary . 98

V Conclusion 100

8 Conclusion 101
8.1 Discussion and Conclusions . 103
8.2 Relevant work . 105
8.3 Future work . 105

Bibliography 106

ix

List of Figures

2.1 Example of an ontology of the Problem Domain 17
2.2 Codecrawler's Class Blueprint view, extracted from [49] 22
2.3 JRipples interface, extracted from [19] . 23
2.4 SHriMP view of a graph node, extracted from [65] 24

3.1 Information Retrieval system main process 28

6.1 Darius First Version Structure . 57
6.2 Darius Graphical Interface . 62
6.3 Button to load a Project/Program . 62
6.4 Loading a Project/Program . 63
6.5 Comments Statistics Calculator Graphical Interface 63
6.6 Results from the Comments Statistics Calculator 64
6.7 Comments Words Analyzer Graphical Interface 65
6.8 List of words to analyze . 65
6.9 Results from the Comments Words Analyzer 66

7.1 Darius Second Version Structure . 81
7.2 Concept Location Graphical Interface . 85
7.3 Loading an IR model . 85
7.4 Writing a query to execute . 86
7.5 Results from a query . 86
7.6 iText Problem domain . 88
7.7 PDF Document query . 89
7.8 PDF Writer class query . 89
7.9 Document's title query . 90
7.10 Add title to document method . 90
7.11 Meta query . 91
7.12 Anchor query . 92
7.13 Phrase query . 92
7.14 Chunk query . 92
7.15 Paragraph query . 93
7.16 Section query . 93
7.17 Chapter query . 94
7.18 Image query . 94
7.19 List query . 95
7.20 List Item query . 95
7.21 UML Class Diagram of the results . 96

x

List of Tables

6.1 Description and size of each selected project 67
6.2 Comments Frequency in the projects (detailed analysis). 68
6.3 Percentage of Source Code Entities (SC) commented (#SC commented / #SC) . . 69
6.4 Most used type of comment per type of source code entity 69
6.5 Percentage of domain words (DW) found (#DW Found / #DW) 71
6.6 Frequency (%) of words of each Domain (#Total DW / #Total Words) 72
6.7 Frequency (%) of words of each Domain per type of comment 72
6.8 Percentage of each type of comments that contains the type of Domain words . . 72
6.9 Frequency (%) of words of each Domain per source code entity 74
6.10 Percentage of each source code entity comment that contains the type of Domain

words . 75

7.1 Results from the Queries . 97

xi

List of Equations

3.1 Term Frequency - Inverse Document Frequency 29
3.2 Bag-of-words . 30
3.3 Cosine Similarity (VSM) . 30
3.4 Single Value Decomposition . 31
3.5 Probabilistic Latent Semantic Indexing . 32
3.6 Latent Dirichlet Allocation . 33
3.7 Cosine Similarity (LDA) . 33
7.1 Cosine Similarity (LSA) . 84

Listings

4.1 Inline Comment . 42
4.2 Block Comment . 42
4.3 JavaDoc Comment . 42
4.4 Unit Comment . 43
4.5 Range Comment . 43

xii

Acronyms

AST Abstract Syntax Tree. 58

FCA Formal Concept Analysis. 36, 37

IR Information Retrieval. 21, 27--30, 33--37, 40, 48, 50,
51, 53, 79--84, 86, 88, 97, 98, 101--103, 105

LDA Latent Dirichlet Allocation. 33, 37
LSA Latent Semantic Analysis. 30--32, 34--37, 83, 85, 97,

98, 103, 105
LSI Latent Semantic Indexing. 30

PC Program Comprehension. 3--8, 10--12, 17, 20, 21, 23-
-27, 33--37, 40, 48--51, 53, 54, 64, 67, 70, 76--80, 84,
86, 87, 90, 98, 101--104

PLSI Probabilistic Latent Semantic Indexing. 32, 33, 37

SVD Single Value Decomposition. 31, 32, 83

TF-IDF Term Frequency - Inverse Document Frequency. 29,
82

UML Unified Modeling Language. 95, 96

VSM Vector Space Model. 30, 37, 82--85, 97--99

xiii

Part I

Introduction

1

Chapter 1

Introduction

This document is a master dissertation that takes part of the second year of the Master Degree in

Informatics Engineering that is held at University of Minho in Braga, Portugal. The work presented in

this master dissertation is included in the area of Program Comprehension and Comment Analysis.

1.1 Overview

We live, without any questions, in the age of Information Technologies. Our lives are increasingly

being more dependent on Information systems, that are addressing our old needs and creating

new and different necessities. The society's continuous requirement for the improvement of these

systems, as taken the professionals of the area to think about how to develop Information systems

faster and cheaper. In software, the professionals of Software Engineering have created, along the

years, a large number of processes and tools that respond to those requirements. Nowadays there

is almost an infinite number of methods and approaches that software engineers and programmers

can follow and use to develop their product according to its requirements, to integrate more easily

on project management and to reduce time and financial costs.

In theory, every process chosen for the development of a software product has the main objec-

tive of a creating a flawless artifact with all the projected requirements developed. But the reality

is that almost every software product does not contain the total set of the planned requirements,

and in those which were developed, some are inefficient or contain severe errors, known as bugs.

Software Maintenance, has become, then, one of the most resource spending phase of every soft-

ware development model. According to [25], before the early 1990s, the maintenance of a software

2

1.1. Overview

product cost almost half of the resources given for its development, and recently in [32] it was men-

tioned that on industry, 80 to 95% of the budget given to Information Systems' development is spent

on maintenance activities.

In Software Maintenance, the biggest problem still resides on the process of comprehending

the program or system to maintain. In [35] the author stated that half of the time spent in Software

Maintenance, is for trying to understand the program to maintain.

The task of comprehending a program is not always an easy and straightforward task. There

are a number of factors that can aggravate this process: the large size and high number of source

code files, the poor quality of the source code, an unknown or not familiar programming language

used, the poor quality of identifiers and comments, amongst others. The combination of some or

all of these factors can almost make impossible the task of understanding a program.

Like any other cognitive process, understanding an unfamiliar or forgotten program has its own

particular characteristics. Every person who tries to understand a program, uses a different cognitive

process by extracting information from different source code elements. The diversity in cognition has

been subject of several studies, particular from the researchers of Program Comprehension (PC).

PC professionals have the purpose of studying the mental strategies that programmers follow in

order to understand a program. By doing this, these professionals can develop tools (PC tools) that

can catalyze the comprehension process. Considering that most of the time in manual program

comprehension is spent on source code reading, these tools contribute enormously for a faster

comprehension process.

Most of these tools enhance program comprehension through the analysis of the source code

itself, using techniques from Program Slicing, control-flow analysis or execution trace analysis,

amongst others. Considering these techniques, it can be concluded that they can extract the

structural information from source code, helping the programmer to understand how the program

executes, which and in what order the functions are called, which variables are used in one partic-

ular moment, and other similar information. However, all this information is not sufficient to really

understand a program.

Every program is contextualized in a domain, containing real world concepts, that is emulated

on the source code. Every instruction and variable has its own meaning that contributes for a better

approximation to the real word. The semantic of source code is what connects the programmer to

the program, and in this way is what contributes most for program comprehension.

3

Comment Analysis for Program Comprehension

Thinking about the semantic in source code, comments are probably the most practical form of

expressing it. Comments have the enormous power of explaining source code along it, in a natural

language that programmers understand. Good comments can contain the explanation of source

code instructions connecting the semantic to the structure. In a perfect world, it could be said

that comments is the interface between two languages: the natural language and the programming

language.

Considering the important semantic richness of source comments it becomes essential to use

it to enhance PC tools. A tool that extracts information from comments to help programmers

understand a program, turns into a powerful instrument for PC.

Some steps were taken in order to develop PC tools that are based on comment information.

However, there is still much to do and the capacity of comment information was not explored at its

most. It becomes, so, one of the main goals for PC researchers.

1.2 The Problem

The role of comments in PC has been subject of several studies along the years. Brooks referred

in his work about PC [17], some words from a late study from Kernighan and Plauger about good

programming styles [43], which concluded that the best documentation for a program includes

enlightening comments. The theory presented in this work has also defined the role of comments

on programming, towards a better program understanding. According to Kernighan and Plauger,

comments should contain the code explanation by creating a bridge between the code and the

operations on real world concepts and objects that are materialized in the code.

Corroborated by Brooks, the bridge which connects the Problem Domain and Program Domain

has been accepted, amongst several cognitive models, as a decisive process in the comprehension

of a program.

Though comments can themselves contribute for the comprehension process, the construction

of the domains bridge by only reading all the comments, represents a long task. So, if it could be

automatized this process by retrieving the information in a strategic way to the user, the process of

comprehension a program will be faster. It becomes essential, then, to take advantage of comments

to create a PC tool.

Accepting that some steps were taken in that direction, the potential of comment information has

4

1.2. The Problem

not been explored to the fullest. Specially, if taking in consideration that the power of comments

reside in creating the domains bridge, PC tools have not addressed the problem exploiting that

capacity.

However, stepping in that direction represents a difficult task, that can explain the lack of Com-

ment Analysis PC tools. The lack of this kind of tools can be due to two factors: the lack or small

number of comments on the analyzed program, or/and their poor quality. If a program does not con-

tain enough comments, or if it contains, their quality is questionable, a Comment Analysis PC tool

will be inefficient and useless.

So the development of a Comment Analysis PC tool should take in consideration all the men-

tioned aspects. And the first question that arises from these conclusions is the following:

Question 1. Is it worthwhile to use comments to develop a Comment Analysis PC tool?

A positive answer to this question is dependable on the positive answers on the following two

questions:

Question 2. Do programmers usually include a significant number of comments on their source

code?

Question 3. Do comments usually include information regarding the problem and program do-

main?

Question 2 addresses the problem of the lack of comments in the source code. A positive

answer to this question is crucial to answer positively to Question 1 because if programs do not

contain comments or have a small number of comment percentage, it will be useless to develop

a Comment Analysis PC tool. It is important to refer that to answer this and Question 3, it is not

necessary to study every program that exists in the world, which would be obviously impossible. If

it is proven that in a significant set of programs, exists a sufficient number of comments, it can be

given a positive answer to Question 2.

About Question 3, it addresses the problem of the lack of quality of comments content. As

mentioned before, Kernighan and Plauger defined that enlightening comments should contain in-

formation to create the domains bridge. In order to create this bridge, comments must contain

information from the two domains: Problem and Program Domain. So it can be defined as a sign

5

Comment Analysis for Program Comprehension

of quality on the comments content, the use of Problem and Program Domain information. If com-

ments contain these two kinds of information to create the domains bridge, they can be very effective

on PC.

Answering positively to Questions 2 and 3 will prove the feasibility of creating a Comment Anal-

ysis PC tool. However the simple fact that it is feasible to create this tool, does not prove that it will

be efficient to enhance the comprehension of programs. So the following question arises:

Question 4. Can the information regarding the Problem and Program Domain contained on com-

ments, properly retrieved and analyzed by a Comment Analysis PC tool, be used to enhance the

program comprehension by establishing a bridge between the two domains?

At first glance, and taking in consideration Kernighan and Plauger's theory, it could be answered

positively to this question. If comments are a privileged mean to involve Problem and Problem

Domain information, Comment Analysis can be used to create a PC tool. However, as mentioned

before, there is still a lack of Comment Analysis PC tools, so we can assume the difficulty on using

comments to develop such tools. So, in order to do so, some effort will have to be spent, in finding

the best strategies to take advantage of comment information to enhance PC, by presenting the

information in a certain way so that users can create faster the domains bridge.

1.3 Goals to Achieve

In the last two sections, it was discussed the need for a Comment Analysis PC tool. As mentioned

before, the exploration of comments through a PC tool would create a great impact on PC. Taking

this in consideration, the work presented in this document had the main objective of studying and

creating an approach that analyzes comments in order to improve program understanding, which

was implemented on a Comment Analysis PC tool.

However, as referred on the previous section, the feasibility of developing such a tool must be

studied in detail; in order to do so, Question 1 must be properly answered by addressing Questions

2 and 3. If the feasibility is proven, the development of an approach can be carried out.

Taking in consideration all the mentioned aspects, the goals of this work were the following:

• Study the fundamental definitions, cognitive models, approaches and tools of PC;

• Study the role of comments on PC;

6

1.4. Outline

• Study techniques which can be applied to develop a Comment Analysis for PC tool;

• Prove the feasibility of developing a Comment Analysis PC tool;

• Develop a Comment Analysis PC tool prototype, using the studied techniques and taking in

consideration the role of comments on PC;

• Evaluate the developed prototype through a rigorous test.

Considering the goals for this work, it is safe to state that all of them were fulfilled with success.

All the results and conclusions, as the goals were accomplished, are described throughout this

document.

1.4 Outline

In this section it is given an overview and a resume of all the chapters presented on this dissertation.

In Chapter 2, it is introduced the area of Program Comprehension, which is a major topic for

this dissertation. It starts with some fundamental definitions, which include the reference of mental

model and its characteristics, mainly its static and dynamic elements and its cognitive enablers.

One important topic included in this chapter is the notion of knowledge domain. This topic is fully

detailed, and it is given focus for two examples of knowledge domain: the Problem and the Program

Domain. With the fundamental definitions fully detailed, the chapter continues with the enumeration

and description of the main cognitive models, accepted on the literature. The chapter ends with an

enumeration of the most important PC tools referenced on the literature.

In Chapter 3, it is given an overview of the role of Information Retrieval on the Program Compre-

hension area. To fully understand this role, it is introduced a detailed explanation of the Information

Retrieval area, including the exposition of the main process executed on Information Retrieval and

the enumeration of the main models used on Information Retrieval. The chapter ends with a study of

the current state of the approaches created in order to incorporate Information Retrieval techniques

to enhance PC.

In Chapter 4, it is included a detailed study of the source code comment, which includes an

overview of the available literature. This includes the enumeration and characterization of the dif-

ferent types of comments and comments content. It is also given an outlook of the relationships

7

Comment Analysis for Program Comprehension

between the source code comment and the natural language and with the size of the program. Con-

cluding this study, there is included a description of the perspective on the literature of comment

density and the practice on software development in the end of this chapter.

In Chapter 5, it is introduced a main topic of this dissertation which is the area of Comment

Analysis for Program Comprehension. This chapter is divided into two different sections that ad-

dressed two different subjects of this area. The first focuses on the overview on the literature of

the role and function of the comment as an important tool for understanding programs. It includes

a detailed enumeration of several tests with human subjects that prove that important role. The

second section focuses on the enumeration of approaches that use comment analysis to attain PC,

and that give the current state of the area of Comment Analysis on the Program Comprehension

field.

In Chapter 6, the focus is on providing answers to Question 1 raised in this dissertation. It

includes the development of a preliminary study that tried to respond to that challenge. The goals

and strategies of this preliminary study are fully detailed in this chapter. Then it is described the

first version of Darius, a tool developed in this work, which is able to run that preliminary test. In

the end of this chapter, it is included the description of the steps taken to develop this study, and a

discussion of the obtained results.

In Chapter 7, the main concern is the strategies developed in order to provide a positive answer

to Question 4. It includes the total detailed description of every module and from the graphical

interface, of the second version of Darius, where it is able to locate problem domain concepts

on the source code, using comment information. This chapter concludes with the enumeration

and description of the steps taken to execute a test that explored the potential of Darius. The

presentation and discussion of the obtained results are also included in this chapter.

This dissertation is concluded by Chapter 8, where there is presented the main conclusions

extracted from this work, and its contributions to the field. There is also pointed out some further

topics of investigation, extracted from the conclusions of this work.

8

Part II

Program Comprehension

9

Chapter 2

Program Comprehension

Software Maintenance is defined as the modification of a software product after delivery to correct

faults, to improve performance or other attributes or to adapt the product to a changed environ-

ment [24]. Knowing the important role of Software Maintenance on software development, the fact

that it spends so many resources mainly on the comprehension of the system, as previously men-

tioned, have created several challenges for researchers. They have identified five tasks that demand

the comprehension of a program in Software Maintenance [100, 23, 9]:

• Adaptive: adapting software to a new data and processing environment;

• Perfective: improving performance, processing efficiency or maintainability;

• Corrective: correct software in terms of implementation failures, processing or performance;

• Reuse: developing a new version of a system by using some of its old components;

• Code leverage: developing a new version by modifying the old system.

Bearing in mind the description of these tasks, it can be stated that program comprehension is a

vital blend of software engineering activities that supports reuse, inspection, maintenance, evolution,

migration, reverse engineering, and reengineering of existing software systems [45]. Recognizing

the vital role of program comprehension as an activity, researchers have studied along the years the

way programmers comprehend a program [17, 87, 72], creating in this manner the discipline of PC,

which is defined in [12] as a Software Engineering discipline which aims to understand computer

code written in a high-level programming language.

10

2. Program Comprehension

In fact, according to PC researchers, in order to comprehend a program, programmers do

not have the same cognitive mechanisms. They follow different cognition strategies according to

different factors [84]. These factors were identified in [92], and can be aggregated into three

groups: Maintainer, Program and Task factors. The first group is related with the characteristics

of the programmer or the individual who is trying to understand the program. These include the

Program Domain knowledge that he has, and his expertise, experience, creativity or familiarity with

the program. The second group aggregates factors from the program itself, such as its Program

Domain, its size, complexity and quality, and the availability of its documentation. The final group,

aggregates factors related with the comprehension task at hand, which includes the task's type, size

and complexity, time constraints and environmental factors. The variation of one or some of these

factor can contribute for a change in the chosen strategy.

Regardless of the strategy followed, comprehending a program does not always represent an

easy task. According to [81], the main problems in program understandability are due to the dif-

ficulty that programmers have in establishing bridges between different conceptual areas, such as

between:

• the Problem or Application domain and the solution;

• different types of abstraction levels in programming;

• the description or design of the system and the actual developed one;

• the associational nature of human cognition and the formal world of software;

• the analysis of the source code using a bottom-up approach and the synthesis of the appli-

cation's description using a top-down approach.

Recognizing the difficulties that programmers have in comprehending a program, as well as

the different strategies that they follow to do it, PC researchers have studied these characteristics

in detail, providing different explanations for the cognitive processes in the comprehension of a

program. As the field of PC becomes richer, the process of comprehending a program has become

a little more clear.

In the following sections, the main topics of the PC research are addressed. In Section 2.1

is it introduced the topic of Mental Model by giving a definition of it. This topic is continued on

11

Comment Analysis for Program Comprehension

Section 2.2, where there are enumerated and detailed the static elements of the mental model, and

on Section 2.3 there are enumerate the dynamic elements. This topic is concluded on Section 2.4,

with the enumeration of the cognitive enablers of the mental model. On Section 2.5 it is introduced

an important topic of the PC research, which is the concept of knowledge domain. Apart from its

definition, this section also focuses on the analysis and definition of the Problem and of the Program

Domain. On Section 2.6 there is given a definition of Cognitive Model, and it is also included the

most referenced cognitive models available on the literature. This chapter ends with Section 2.7,

with a list and description of tools that enhance PC.

2.1 Mental Model

In [92], Storey et al. definedMental Model as a maintainer's mental representation of the program to

be understood. As a mental representation, it is formed through observation, inference or interaction

with the program [84]. This process of formation can be more or less correct or complete according

to several factors such as the programmer's experience or the program complexity, as mentioned

before.

According to von Mayrhauser and Vans, a mental model is composed by static and dynamic

elements [100], and its construction is catalyzed by cognitive enablers. In the following sections,

these elements are addressed.

2.2 Static elements of the Mental Model

Although the construction of a mental model is different from programmer to programmer, every

mental model contains a set of entities which are the same on all cases. The static elements

that constitute a mental model include text structures, chunks, plans and hypotheses. These are

described in detail in the following subsections.

2.2.1 Text structure

According to von Mayrhauser and Vans in [100], a text structure includes the program text and

its structure. In more detail, the text structure is the enumeration, the sorting and the ranking of

instructions that constitutes the organization of a program [11].

12

2.2. Static elements of the Mental Model

2.2.2 Chunks

Chunks [51, 26] are text structures which represent different levels of abstraction. In some cases,

a chunk can be formed by several other chunks with lower levels of abstraction.

A single chunk is composed by amicrostructure and amacrostructure. A chunk'smicrostructure

constitutes its set of statements and instructions, which can be abstracted by its macrostructure,

which includes only a label that describes the chunk. For example, a chunk which constitutes a text

structure of the sort algorithm, can be attributed the label sort.

2.2.3 Plans

In [100], plans are defined as knowledge elements for developing and validating expectations, inter-

pretations, and inferences. In other words, a plan is a stereotyped situation that programmers can

use in order to infer or recognize that typical situation from the program. They are composed by

types and fillers. The first ones are generic objects such as lists, arrays or stacks and the second

ones are specific procedures and operations on those objects, such as pop and push for a stack ob-

ject. These are examples of programming plans, as their domain includes programming concepts.

The other type of plan is the domain plan and is related with the problem or application area of the

program. A typical domain plan of a music store program would include objects such as a CD or a

DVD and operations such as buy a CD or create a DVD.

2.2.4 Hypotheses

Hypotheses [18] are conjectures or plausible inferences that the programmer formulates about the

program. In [52], Letovsky identified three major categories of hypotheses:

• Why hypotheses. Conjectures about the purpose of a program entity;

• How hypotheses. Conjectures about the way a goal is accomplished in the program;

• What hypotheses. Conjectures about the classification of a program entity (variable, function,

etc.).

13

Comment Analysis for Program Comprehension

2.3 Dynamic elements of the Mental Model

As mentioned before, when trying to understand a program, programmers follow different ways

of achieving that goal, according to several factors. The sequence of actions and procedures that

programmers follow in order to do it, is defined as strategy [100, 54].

There are two different categories of strategies [100], according to the amount of the program

to understand and to the detail of the comprehension analysis. For the first category, Littman

et al. identified in [54] two different types of strategies that programmers follow: systematic and

as-needed. In the first type, the programmer tries to understand the whole program before any

maintenance activity, as opposed to the second one, where the programmer tries to understand

only the parts of the program which are targeted for maintenance. In the second category, two

types of strategies are identified: shallow [87, 1, 20] and deep reasoning [20]. Shallow reasoning

was introduced by Soloway and Ehrlich in [87], as a strategy followed by programmers, where they

scan for critical lines of code and beacons to instantly identify plans in their mental model [1]. In

deep reasoning, the programmer tries to synthesize the program, by analyzing the whole program,

and tries to establish causal connections between the functions and objects of the program [100].

This type of strategy is most used when the program is completely unknown to the programmer, as

referred in [27].

As a procedure of production of information, a strategy is guided by two processes: chunking

and cross-referencing.

2.3.1 Chunking

Chunking [51, 26] is the process of joining and aggregating several lower level chunks who are

conceptually connected to form a higher level chunk, who can then be attributed a label which

abstracts the chunk.

2.3.2 Cross-referencing

Cross-referencing [100] is considered to be an essential process on the construction of a mental

model [73, 2]. In this process, the programmer tries to connect different levels of abstraction, such

as between program parts and functional descriptions [100].

14

2.5. Knowledge Domains

2.4 Cognitive enablers of the Mental Model

Cognitive enablers, as the word says, are elements which can increase the pace of the comprehen-

sion process. The following two subsection present two examples of cognitive enablers.

2.4.1 Beacons

Beacons [18, 103] are clues on the program that could give indicators of a particular structure or

operation. For example, a block of code which represents a swapping operation in an array, can be

a beacon for the implementation of a sort algorithm.

2.4.2 Rules of discourse

In [87], Soloway and Ehrlich defined rules of discourse as rules that specify the conventions in

programming. These include standard algorithms, data structure implementation and coding stan-

dards [21].

2.5 Knowledge Domains

The concept of knowledge domain was defined by Brooks in [18], as a closed set of primitive

objects, relations among objects, and operators which manipulate these properties or relations.

According to this author the comprehension of a program is achieved through the bridging and

the mapping between several different abstraction level knowledge domains, such as between the

Problem Domain and the Program Domain [102]. In this section there is included an exhaustive

study about this subject subject.

2.5.1 Ontology

Although the representation of a knowledge domain can be purely mental, there are other ways

of describing it. One of them is by using an ontology [22, 69, 42]. which is a formal explicit

description of concepts in a domain of discourse (classes (sometimes called concepts)), properties

of each concept describing various features and attributes of the concept (slots (sometimes called

roles or properties)), and restrictions on slots (facets (sometimes called role restrictions)) [69]. A

15

Comment Analysis for Program Comprehension

class is the collection of objects of the domain that share properties. A class can have subclasses,

that have more properties and are more specific, and this relationship is defined by a taxonomy.

Classes can also be instantiated, creating a knowledge base.

The development and use of ontologies have several advantages. These include the sharing and

reusing of knowledge, as well as a better acquisition, verification and maintenance of knowledge

base systems.

There are several methodologies for the development of ontologies, that can be seen in [42],

but in general the following steps are generic [69]:

• Identifying the classes of the ontology;

• Arranging the classes in a taxonomy hierarchy;

• Identifying the slots and the permitted values for them;

• Instantiating the classes.

An example of ontology can be seen on Figure 2.1.

2.5.2 Problem Domain

Problem or Application Domain [85, 17] of a program is a part of the world about which the program

is concerned with solving problems [82]. It can be characterized by a common shared vocabulary,

by common assumptions and approaches for the solutions, and a literature, that exists indepen-

dently from the programs that solve the problems. In [77], Prieto-Diaz and Arango enumerated the

prerequisites for a Problem Domain:

• deep and comprehensive relationships among the objects of the knowledge domain;

• the existence of a community concerned about solving problems of the domain;

• the acknowledgment in the community of the existance of a software solution for these prob-

lems;

• the existence and access to a body of knowledge of the domain to create that solution.

Figure 2.1 shows an example of a Problem Domain of software connected with library manage-

ment, represented by an ontology.

16

2.6. Cognitive Model

Figure 2.1: Example of an ontology of the Problem Domain

2.5.3 Program Domain

Program or Programming Domain [17] of a program is a knowledge domain related with the pro-

gramming and with the source code level. It includes generic concepts of programming and also

specific concepts relating to the programming language and its paradigm (object-oriented, impera-

tive, functional, etc).

2.6 Cognitive Model

In the previous sections it is discussed the concepts behind the mental model, the entities that form

it (static and dynamic) and that enable and accelerate its construction, as well as the definition of

knowledge domain, highlighting the Problem and Program domain. In this section, it is discussed

the concept of cognitive model in PC. It is defined as a mental pattern that programmers follow in

order to formalize the knowledge about a program through the creation of a mental model [101]. This

concept of cognitive model is different from the strategy one, in the way that the first is defined as

the set of cognitive processes and temporary information structure in the programmer's head [93],

and the second is more defined by the goals of the comprehension and is more rational.

In this chapter it was also enumerated the factors (maintainer, program and task) that contribute

to the different types of cognitive processes of programmers when they understand programs. Tak-

ing this, researchers inPC have created several theories that try to explain these cognitive processes.

17

Comment Analysis for Program Comprehension

In the following subsections it will be described the most relevant cognitive models accepted in the

literature. The comparison between models and its discussion can be seen in [11, 100].

2.6.1 Brooks model

The main idea in Brooks model [18] is that the comprehension of a program is the result of the

mapping between the Problem Domain and the Program Domain. To do so, the programmer has to

execute successive mappings over several other domains in between. This paradigm of construc-

tion and reconstruction of knowledge is directly dependent on the programmer's expertise about

the Problem Domain of the program. Starting with this Domain knowledge, he defines initial hy-

potheses and then successively refines them using a top-down approach through the domains. The

refinement process includes the validation of these hypotheses, which can be done, mainly, through

the existence of beacons on the source code.

2.6.2 Soloway and Ehrlich model

In [87], Soloway and Ehrlich studied the effect of the rules of discourse and plans on the compre-

hension of a program by experients and novices programmers. This was done in order to support

their theory of comprehension. According to the authors, programmers expect that a program is

composed of plans which have been adapted to the Problem Domain of the program [105], and

that comprehension is dependent on whether the rules of discourse are followed. The results of

the study corroborated their theory. As expert programmers have more rules of discourse experi-

ence they were faster in the process of comprehension. However, when dealing with unplan-like

programs (rules of discourse violated), the times of comprehension were similar to those of novice

programmers. This proved in fact their theory.

2.6.3 Shneiderman and Mayer model

The Shneiderman and Mayer's model [86] sees program comprehension as a bottom-up task. In

bottom-up comprehension, the theory is that programmers start by reading individual code state-

ments and try to successively chunk them into high level structures, until some high-level under-

standing of the program is attained [93]. As for Shneiderman and Mayer's model in particular,

the authors considered that comprehension is composed by syntactic and semantic programming

18

2.6. Cognitive Model

knowledge. Syntactic knowledge is composed by syntactic details of the programming language

in particular such as keywords, language syntax and available library routines [105]. Semantic

knowledge includes language-independent programming knowledge and Problem Domain informa-

tion. Using a bottom-up approach, the programmer tries to reconstruct the Problem Domain of the

program, by using these two types of knowledge.

2.6.4 Pennington model

Pennington's model [72] also sees comprehension as a bottom-up task. In their model, in program

comprehension the programmer defines two mental structures: the program and the situation

model. The program model is build first and extracts the sequence of operations and procedures of

the program, defining an abstract control-flow of the program. This is achieved through the chunking

of microstructures and cross-referencing into high level programming plans and macrostructures.

The situation model is also constructed in bottom-up, through chunking, however, these are done

by mapping the program model into high level domain plans (Problem Domain) that describe the

goals of the program.

2.6.5 Letovsky model

In Letovsky's model [52], comprehension is defined as a set composed by three elements: a knowl-

edge base, a mental model and an assimilation process. The knowledge base is dependent from

the programmer and contains information regarding the Problem Domain, the Program Domain,

rules of discourse and plans. The mental model is composed by three layers. The first one is

called specification layer which contains the Problem Domain and high level goals of the program.

The second layer, implementation layer, is composed by the Program Domain of the program. The

third layer contains the current established links between the other two layers performed by the pro-

grammer, which is called annotation layer. In order to create these layers, the programmer follows

an assimilation process. According to Letovsky, this is achieved either by top-down or bottom-up,

depending on the way programmers think is the best source of knowledge in the moment.

19

Comment Analysis for Program Comprehension

2.6.6 Soloway, Adelson and Ehrlich model

The Soloway et al.'s model [88] defines comprehension as a top-down task which connects external

representations (documents,requirements, etc.), internal representations (mental model), rules of

discourse and plans. In particular, this model highlights the role of plans in comprehension, defining

three types of them: strategic, tactical and implementation plans. As this model follows a top-down

approach, the programmer starts with an overall idea of the goals of the program, considering the

Problem Domain, and according to the external representations and his expertise. The strategic

plan defines the global strategy or algorithm expected by the programmer to obtain a particular

goal in the program. The second plan, tactical plan, describes the general steps of the particular

algorithm that is chosen to solve the problem. The implementation plan defines the expected data

structures, functions and operations that implement those steps, and that map them to the source

code. In general, this cognitive model defines comprehension as the successive mapping between

these three types of plans using, mainly, rules of discourse and beacons.

2.6.7 von Mayrhauser and Vans model

von Mayrhauser and Vans theorized a model described in [99] that is based on the fact that pro-

grammers change between top-down and bottom-up, according to the necessities. In particular this

model incorporates the top-down model of Pennington and the knowledge base model of Letovsky.

As mentioned before, the knowledge base is used to store knowledge in order to achieve new knowl-

edge. When the program is known and beacons can be recognized, the programmer tends to use

the top-down. Then, if the code is unfamiliar to the programmer, he tries to invocate the program

model, obtaining a control-flow abstraction of the program. When some or all of the program model

is built, the programmer tries to map it into higher level structures, defining the situation model, as

mentioned before.

2.7 Program Comprehension tools

As was mentioned before, the task of comprehending a program is not always easy and straighfor-

ward. In order to help in that task, researchers have created several PC tools, considering the main

topics behing PC, that are addressed in this chapter. The main paradigm of these tools is to extract

20

2.7. Program Comprehension tools

information, analyze and focus it, and finally, visualize it for the person who tries to understand the

software system [55]. To do so, a PC tool must contain the following modules, as was defined

in [12]:

• a parser and an analyzer for the source code of the given program;

• a knowledge base to store and handle the extracted knowledge;

• interactive vizualizers, to present the retrieved information to the user.

In this section some PC tools are briefly described. Although Information Retrieval (IR)

and Comment Analysis PC tools do no take part of this list, they are fully detailed in the following

chapters as they are of great interest for this work.

Alma

Alma [74] is a tool that provides to the user the inspection of the data and control flow of a pro-

gram, through vizualization and animation. This particular tool has the advantage of being language

independent.

Bauhaus

Bauhaus [79] is a toolkit that provides methods, tools and techniques for PC on all levels of ab-

straction, from source code level to architecure level. In particular, the tools provide architectural

extraction and validation, as well as protocol analysis through control flow graphs.

Canto

Canto [5] is a PC and Software Maintenance environment that analyzes C programs, and extracts

the arquitectural structure and the control-flow graph.

Codecrawler

Codecrawler [49] is a Software Vizualization tool that provides views about source code entities and

the relationships between them. For PC purposes in particular, this tool offers an interesting view

called Class Blueprint (Figure 2.2), that provides the vizualization of the internal structure of classes

21

Comment Analysis for Program Comprehension

and class hierarchies. In this view, it can be seen, for example, the number of times a method is

called by a class or the similarity amongst classes.

Figure 2.2: Codecrawler's Class Blueprint view, extracted from [49]

Imagix 4D

Imagix 4D1 analyzes C++ and Java programs, and provides views of the architecure structure at

different levels of abstraction. These go from class and function dependencies to data-flow analysis

and detailing of data structures and usage.

JRipples

JRipples [19] is a tool that assists programmers on incremental software changes, providing im-

pact analysis and change propagation. The user defines the set of classes which are going to be

changed (impacted), and the tool provides the enumeration of classes which are dependent on

those, and that need do be changed also, saving time to the programmer, that does not need to

comprehend the whole system to see what classes successively need change and are impacted.

The interface of JRipples can be seen on Figure 2.3.

1http://www.imagix.com/

22

2.7. Program Comprehension tools

Figure 2.3: JRipples interface, extracted from [19]

Oo!Care

Oo!Care [53] is a PC tool developed for object oriented programs. Through Oo!Care, the user can

extract and vizualize the program dependencies in a control-flow and data-flow graph, the inherence-

hierarchy between classes and file-dependencies.

Rigi

Rigi [68] is a PC tool for C, C++ and COBOL programs. It provides support for the extraction,

analysis and vizualization of these software systems. The main idea of Rigi is to parse the source

code and translate it to an intermediate language (Rigi Standard Format), that can be read by the

graph editor. This graph editor is capable of analyzing the information and providing the vizualization

of a graph, that can show the architectural structure of the software system at different levels of

abstraction. The nodes of the graph include functions, variables or data structures, and the links

can represent function to function calls or function to variable calls.

23

Comment Analysis for Program Comprehension

SHriMP

SHriMP [65] is another Software Vizualization PC tool that presents a nested graph view of a soft-

ware architecure, presenting fragments of source code and documentation (javadoc) in the graph

nodes, as it can be seen in Figure 2.4.

Figure 2.4: SHriMP view of a graph node, extracted from [65]

2.8 Summary

Program Comprehension (PC) is a Software Engineering discipline that studies the way program-

mers understand programs, though the analysis of the mental processes executed in order to do

so. In particular, this area of PC is a major concern for the area of Software Maintenance, which by

obvious reasons, demand the necessity of a faster program comprehension process. However, the

difficulty on understanding completely this process arises from the fact that different programmers

use different cognitive strategies according to different factors: the programmer itself, the program

to comprehend and task of comprehension at hand. However, all of the different processes followed

stumble into different problems which affect them.

24

2.8. Summary

In the process of comprehending a given program, the programmer maintains and updates a

mental structure which represents the current state of knowledge about the program. This mental

structure is defined as a Mental Model. To build such a mental structure, the programmer takes

advantages of elements that facilitates that construction. These elements can be divided into static

and dynamic elements and also cognitive enablers.

In order to comprehend a given program, a programmer also uses is own personal knowledge.

This knowledge can be represented using a knowledge domain. In particular there are two types of

knowledge domains which are of great interest for the PC research: the Problem and the Program

Domain. The first represents the knowledge related with the problems the program at hand is

concerned on solving. The second represents the knowledge related to the programming in general

and with the programming language of the source code of the program in particular.

These different types of cognitive processes, are subject of intense discussion between several

authors of the PC area. In particular, several authors have focused on finding models that program-

mers follow in order to understand program, and defined them as Cognitive Models. Each model

has its own characteristics, however they can be divided into three different groups: top-down,

bottom-up and hybrid models.

Considering the importance of the process of comprehending programs, several authors have

taken advantage of the research in PC, and adapt it to the development of tools and approaches

that help programmers understand faster a given program.

25

Chapter 3

Information Retrieval for Program

Comprehension

In the previous section it is described the fundamental cognitive models that several PC researchers

have theorized to explain the programmer's cognitive processes behind the comprehension of a

program. Although the essence of these models is still very present in actual PC, the reality is

that the most recent one is dated from 1995, raising the question if whether these models have

accompanied the evolution of software.

Since that time, software has become larger and more complex. As Software Maintenance has

become more demanding, the process of comprehending a program should follow this demand,

reducing the time and effort to complete it. To accelerate this process, programmers choose to

follow an as-needed strategy (Chapter 2) instead of trying to understand the whole program. In [78],

the authors corroborated this theory, and completed it. According to Rajlich and Wilde, when the

program is too big to try to understand it completely, programmers prefer to understand minimal

parts of the program, parts which are defined by concepts. They also gave a definition of concept,

presenting it as units of human knowledge that can be processed by the human mind (short-term

memory) in one instance. [78].

However, the idea of finding concepts on code is not new. Biggerstaff et al. identified it and

called it the concept assignment problem [14]. The authors defined this problem as the problem

of discovering (...) human oriented concepts and assigning them to their implementation instances

within a program [14]. Several researchers have addressed this problem, by creating approaches

and tools to assist concept location. Although there are enumerous types of approaches for concept

26

3.1. Information Retrieval

location, this problem is mostly addressed in the literature using techniques from IR.

In this chapter there is addressed the subject of the role of Information Retrieval techniques on

PC. This chapter starts with Section 3.1 that gives an overview of the IR area, introducing funda-

mental definitions, detailing the main process behing any IR system, and includes the enumeration

and full description of the main IR models focused on the literature. This chapter ends with Sec-

tion 3.2, that includes an exhaustive study about the role of IR on PC, introducing and describing

several approaches that address this problem.

3.1 Information Retrieval

IR is defined in [61] as a field of study that has the goal of finding material (usually documents)

of an unstructured nature (usually text) that satisfies an information need from within large col-

lections (usually stored on computers). Despite of this definition, according to Baeza-Yates and

Ribeiro-Neto [8], IR has expanded its research, from merely indexing and searching of documents,

to modeling, document classification and categorization, systems architectures, amongst other sub-

jects.

Although the area of IR has born many years ago, the sentiment was that IR techniques were

exclusive of some restrictive groups, which included librarians and information experts. The use of

IR techniques have become very popular in the past two decades, due to the creation of the World

Wide Web (WWW). The large propagation of information in the WWW, demanded the development

of tools that responded to the users requirement for the search of specific information. This led to

the creation of search engines, as the world renowned Google1.

As was mentioned before, IR is mainly a task of retrieving documents responded to a given

query. There are many models [28, 40] defined in the IR literature that address this task, but the

base process in IR is well defined. But before addressing the process behind IR, it it essential to

discuss the factors that affect the success of an IR system, which are: the user's task [10] and the

logical view of the documents [8].

In an IR system, the task of the user is to translate its necessity for a specific source of in-

formation or document, in the form of a query that the IR system can interpret (typically, a set of

keywords). According to the query, the IR system retrieves a set of documents, which it considers

1http://www.google.com

27

Comment Analysis for Program Comprehension

to satisfy the conditions, and ranks them according to its interpretation of relevance to the query.

Typically and due to performance reasons, IR systems see documents as a set of index key-

words (or inverted index [61]) that can be manually or automatically attributed. In the database of

an IR system, the information of the documents is stored in the form of a dictionary [75]. This struc-

ture contains the set of all words that appear in all the documents, and to each word is associated

the list of documents in which the word occurs and the respective weight in the document (typically

the frequency). This represents the logical view of the documents.

In this section is described the base process of IR. This process is the matrix for the variety of

IR models available in the literature, that are also addressed in this section.

3.1.1 The Information Retrieval Process

The base process or general model in IR is shown on Figure 3.1, and is composed by two stages:

indexing and retrieval.

Figure 3.1: Information Retrieval system main process

On the first stage, the logical view of documents must be defined. The collection of documents

that form the database of the IR system must be properly indexed (using the inverted index), for

a good search and retrieval performance. To create the index, each document must be processed

to extract the keywords that form it. Typically, not all of the words included in the document take

28

3.1. Information Retrieval

part of the index. There is a filtering process, using text operations, that pretend to extract the most

concise set of keywords that form the index. These text operations include:

Sentence tokenization Breaking the text into individual sentences.

Word tokenization Breaking the sentences into individual words.

Stemming Reducing a word to its grammatical root.

Stop word removal Elimination of words that are too frequent or do not have any significance

or value.

After the application of text operations to extract the indexes for the documents, it is then

possible to create the dictionary, by calculating the weight of each word in the document. Apart

from the typical and simple attribution to the weight of the frequency of the word in the document,

there are several weightning algorithms. However, the most cited and used in the literature is the

Term Frequency - Inverse Document Frequency (TF-IDF) [50, 80]:

Term Frequency - Inverse Document Frequency In this method, it is assigned a higher

weight to words that occur frequently on a small set of documents. On the Equation (3.1), there

is presented the TF-IDF formula to calculate the weight (wi,j) of the word j in the document i,

and where tfi,j is the frequency of j in i, N is the total number of documents and dfj is the total

occurence of j in all documents.

wi,j = tfi,j × logN/dfj (3.1)

The second stage, retrieval, starts with the definition of a query by the IR system user. Then,

the same text operations, mentioned before, are also performed on the query, in order to be in tune

with the inverted indexes. After the query is preprocessed, the search phase begins. During this

phase, all the documents that contain at least one word from the processed query are retrieved.

The last phase of this stage, is the ranking process, which evaluates each document according to

the relevance to the query. The documents are then presented to the user, in a descendant order,

according to the attributed rank value.

29

Comment Analysis for Program Comprehension

In the IR literature there is a vast number of IR models that instantiate this general model,

specially by altering their ranking algorithms. In the following sections, the most relevant ones are

briefly described.

3.1.2 Vector Space Model

In the Vector Space Model (VSM) [83, 31, 50] documents and queries are seen as vectors of weights

of words (bag-of-words), as it is shown on Equation (3.2). di represents the vector for document i

and wi,n represents the weight of the word n in i.

−→
di = (wi,1, wi,2...wi,n) (3.2)

VSM defines the rank of a document, by calculating the similarities between the document and

the query vectors. This is done using the cosine similarity, that calculates the cosine of the angle

between the two vectors. The cosine similarity formula is enounced on Equation (3.3), where di is

the document i, q is the query, and Θ is the angle between the two vectors.

sim(di, q) = cosΘ =

−→
di · −→q
|
−→
di ||−→q |

(3.3)

If the document and the query do not share any words, the attributed rank will be of 0, according

to the cosine similarity. This value will be higher, as the angle between the vectors decreases.

3.1.3 Latent Semantic Indexing

Latent Semantic Indexing (LSI) [28, 44] is the application of Latent Semantic Analysis (LSA) [47,

30, 48] to IR.

In VSM, the meaning and semantic of the words and the relationships between them are not

taken into account. They are only simple lexical objects for matching. This, however, has created

two major issues that cause lack of effiency in VSM: synonymy (different words with equal meaning)

and polysemy (word with multiple meanings). While the first problem drives to a poor recall (fraction

of the relevant documents that are retrieved), the second one causes a lack of precision (percentage

30

3.1. Information Retrieval

of retrieved documents that are relevant to the query) in the retrieved documents.

To solve these problems, LSA predicts that there is a latent but hidden structure behind the

relationship between words. This latent structure preconizes the existance of latent variables, which

are seen as concepts. The goal of LSA is to associate these hidden variables (concepts) to the

observed ones (words and documents). To achieve this, LSA builds a new dimension space, the

concept space, where documents and documents can be mapped. Words and documents who are

close to each other in the concept space, are seen as related, and can represent a given concept.

To build the concept space, LSA uses Single Value Decomposition (SVD) [3] which is an alge-

braic technique that factorizes a matrix in order to enable the reduction of its dimensions, without

important losses to the original matrix. In this context, the SVD algorithm will not be described due

to its extension and demand for advanced algebraic and mathematical background. However, the

full description of the algorithm can be seen in [3]. For now, it is important to focus on the result of

the SVD.

The application of SVD on a matrix, factorizes it into three matrixes, as shown on Equation (3.4).

A is the original matrix (t lines ×d columns) and r is the number of chosen dimensions.

At,d = Ut,rSr,rV
T
r,d (3.4)

In the context of LSA, the first step is to build a matrix that contains the information from the

documents. Each document vector represents a column in the matrix, and each line represents a

word. As was said before, the application of SVD to the matrix, will factorize it into three. Then it has

to be chosen a suitable number of dimensions for the new concept space, to reduce the matrixes.

Considering again the Equation (3.4), each line (vector) of the matrix U will give the position of

each word in the concept space. The same principle is applied to the matrix V , but in this case the

position of each document in the concept space is given by the respective column (vector).

To perform the retrieval, the query must also be represented in this concept space. In this case

the value of each word for the new query vector in the concept space, is equal to the total sum of

all the values (the columns) correspondent to that word in matrix U .

As the query, words and documents are represented in the same concept space, it is possible

to calculate similarities between these entities, in particular ranking the documents in relation to

the query. This can be done, amongst other methods, using the cosine similarity (Equation (3.3)).

31

Comment Analysis for Program Comprehension

3.1.4 Probabilistic Latent Semantic Indexing

LSA uses SVD to factorize the word by document matrix. However, SVD has a high computational

complexity (O(min(t2d, td2))), which causes poor performance to LSA. This is aggravated by

the fact, that the SVD must be recalculated at every change on the matrix (e.g. new documents).

Furthermore, LSA has only a purely mathematical foundation.

To overcome these problems, and to include a statistical foundation on LSA, Hofmann devel-

oped the Probabilistic Latent Semantic Indexing (PLSI) [40], that does not use SVD to approximate

the word by document matrix to model relationships between words and documents, but uses a

statistical model called aspect model. This model is a latent variable model, for co-occurrence data

which associates an unobserved variable with each observation [40]. This unobserved variable is

defined as a topic or concept, as mentioned before.

The goal of PLSI is to calculate P (w|t) and P (t|d) knowing only P (w, d), which are respec-

tively the probability of the occurence of a word w on a given topic t, the probability of the existence

of a topic t in a document d and the occurence (weight) of the word w in the document d. The

mathematical model of PLSI is enounced on Equation (3.5).

P (w, d) =
∑
t∈T

P (t)P (t|d)P (w|t) (3.5)

To solve this problem, PLSI can use several methods, such as the Maximum Likelihood or the

Expectation-maximization algorithm, which are methods for estimating the parameters of a given

latent variable model. Like SVD, these are complex algorithms that demand advancedmathematical

background, so they are not described in this document. However, the details of the algorithms can

be seen in [40, 67, 29].

To perform the retrieval of documents, the query is seen as a new document to include in

the matrix. This will need, of course, the recalculation of the probabilities, using the estimating

algorithms. Similarity measures, like the cosine similarity, can then be used to perform the ranking

of the documents according to the query.

32

3.2. Information Retrieval For Program Comprehension

3.1.5 Latent Dirichlet Allocation

In PLSI the distribution of topics on documents is purely uniform. However, thinking about the

reality, this is almost always not true. Documents from the document database of an IR system

can contain different numbers of topics or concepts.

To translate a better view of the reality on the distribution of topics or concepts on documents,

Latent Dirichlet Allocation (LDA) [15] defines the distribution of topics as following a Dirichlet distri-

bution [57]. The mathematical model behind LDA can be seen on Equation (3.6).

P (w, d) =
∑
t∈T

P (t|d)P (w|t) (3.6)

P (t|d) and P (w|t) follow two Dirichlet distributions, respectively θ, a distribution of topics

over a document, and φ, a distribution of words over a topic. The estimation of these distribution is

seen as a problem of Bayesian inference [16]. There are several algorithms to solve this problem,

including the Gibbs sampling, that is fully detailed in [90].

The formula to calculate the ranking of a document d according to a given query Q in LDA, is

enounced on Equation (3.7) [56].

sim(Q, d) = P (Q, d) =
∏
qk∈Q

P (qk, d) (3.7)

3.2 Information Retrieval For Program Comprehension

In the last decade, the use of IR techniques on the development of PC tools has risen substancially.

Typically, all of the research done so far in this field has the goal of addressing the concept assign-

ment problem, which is, as was mentioned before, the verification that real-word concepts (Problem

Domain) are integrated on the source code (Program Domain), and therefore, there is the need to

find those mappings. In this section it is described the state-of-the-art on the role of Information

Retrieval on PC.

The tools and approaches, described in this section, follow the same general process, similar

to the described in Subsection 3.1.1, and mentioned by Marcus et al. in [64]. This process has the

33

Comment Analysis for Program Comprehension

following steps:

1. Preprocessing of the source code or the documentation to create the document database (e.g

text operations);

2. Indexing the created documents;

3. Formulation of queries interpreted by the IR system;

4. Preprocessing of the formulated queries;

5. Execution of the queries;

6. Retrieving and ranking of the results.

This type of IR process was introduced in the PC field by Maletic and Valluri in [60]. In this

work, the authors applied LSA to create clusters of similar source code components. The performed

text operations on source code were rather limited, and included only the removal of non-essential

symbols such as comment delimeters, syntactical tokens and ubiquitous tokens such as semi-

colons. The granularity issue was addressed, as the authors decided to define mostly source code

files as documents, because they felt that modules were too large in granularity and functions were

too small. The new concept space in LSA included 250 dimensions, which was a large reduction to

the original (approximately 2000). To create the clusters, the authors defined a similarity value λ,

calculated by the cosine similarity. According to them, a document belongs to a given cluster if it is

at least λ similar to any one of the other documents in the cluster. Although the authors assumed

that the use of LSA does not take advantage of word ordering, syntactic relations or morphology,

the results showed that LSA, applied to the source code, was able to induce clusters of source code

components which were similar in reality. This work included two experiments which applied LSA

to a C++ application and a C application. The clusters created for the first one (object oriented)

reflected groups of related classes which addressed the same concepts or solved similar types

of problems. For the second one, the created clusters seem to reflect classes, as most of them

included one or two definitions of data structures and included functions that operated on those

structures.

The previous work was continued in [58], as the authors studied the way the clusters were or

not able to help on the process of comprehending a program. This study focused on the definition of

34

3.2. Information Retrieval For Program Comprehension

metrics that try to measure the similarity and cohesion between files and clusters. In an experiment,

these metrics were applied on an application, and showed that these can identify groups of files

that implement:

• Abstract Data Types or classes that represent concepts;

• a general or abstract concept;

• a general structure (lists, arrays,etc.) or similar ones.

The next step followed by the authors was to combine this method with structural ones, in

a work described in [59], to show that it can help on program comprehension in two different

dimensions. The structural methods included the data-flow, control-flow analysis, coupling, etc.

Again, metrics to assess the cohesion between files and clusters were identified, this time including

the structural information too. In the experiments, the metrics returned similar results from those

from the previous work.

In [62], the same authors continued their work of applying IR techniques for PC purposes, by

defining an approach that retrieved links between documentation and source code using LSA, and

compared it to another approach that used VSM [6], from Antoniol et al.. In this work, source code

and documentation were represented in the same conditions. As usual, the granularity chosen for

source code was at file level; for documentation the chosen granularity was at section level. The

performed text operations were a little improved, and included the splitting of identifiers, that follow

usual naming standards, into separate words (e.g. "blueCar'' or "blue car'' divided into "blue'' and

"car''). To retrieve the links between documentation and source code, the cosine similarity between

each pair from the document matrix and source code matrix were calculated. The authors defined

a threshold of ε, which represented the minimum value of similarity to establish a link between the

source code and a document. The results from the experiments performed on a real application

showed that the traceability reached a 100% recall value, and approximately 12% for precision, which

were superior values from those obtained by Antoniol et al., using VSM.

The concept assignment problem was addressed by the same authors in [63]. In this work,

the aim was to use the LSA model to map problem domain concepts on the source code. These

concepts were found using queries expressed by the user or were created automatically. The pro-

cess behind this work followed the same patterns as the previous ones. However, the granularity of

35

Comment Analysis for Program Comprehension

documents was rather different. In the experiment they conducted on a C application, each decla-

ration block, function and header file was considered as a document in the document database. To

search for a particular concept, the authors defined several manual queries, ones more complete

than the others. This approach also included the existance of automatic queries, which were devel-

oped using a single word or phrase indicated by the user, and the 40 terms more related to that

word or phrase, were automatically added to the query by the system. The first type of queries, the

manual ones, resulted on a 100% recall and a 33.33% precision. The automatic queries retrieved

also 100% recall and a 26.66% precision.

The works previously described have mainly focused on experimenting concept location on

C programs. In [64], the authors studied the way concept location affected the comprehension of

object-oriented programs, which by its nature, are already design into classes which represent, more

or less, concepts from the Problem Domain. This study addressed the concept assignment problem

using several static techniques of code analysis: grep (string pattern matching), dependency search

and LSA. In the experiments, the results showed that even on object-oriented programs there is the

need to take advantage of concept location techniques, due to the fact that is not straightforward

that a class hierarchy represents a hierarchy of Problem Domain concepts, as only a minority of

these concepts are implemented as specific classes, and the rest are scattered over several classes.

The authors also concluded that the simple fact that a program is object-oriented does not simplify

the task of concept location.

On the object-oriented programming paradigm, modularity is considered to be the most im-

portant pattern. However, by performing modularity there are some functions or classes, like per-

sistence and logging, that cut across or serve across different other classes, as concluded in the

previous described work. These are known as crosscutting concerns, and on PC context these

types of concerns, implementations of a concept, pose difficulties on the understanding, not only

because the implementation of a given concern is not reserved to a single module but also because

it becomes more difficult to understand the single concern of a single module. To solve this, Aspect

mining can do two things: semi-automatically help developers understand an isolated concern, by

executing a bottom-up understanding; or refactor an object-oriented programming system to another

system that captures crosscutting concerns, which is called an aspect-oriented system. There are

several techniques for Aspect mining, such as the fan-in analysis or dynamic analysis, but in this

context of IR for PC the focus is on the Formal Concept Analysis (FCA) and other IR techniques.

36

3.3. Summary

FCA is a mathematical lattice theory that defines concepts as maximal groups of elements that

share the same properties. Concepts are composed by its intension and extension. The intension

of a concept contains the properties shared by the all the elements that composed it also known

as the concept extension. With this information, it is possible to build a lattice where in the root or

bottom concept are colocated the elements that share all the properties and in the top concept are

colocated properties shared by all the elements.

In [76], the authors tried to address the concept assignment problem by combining IR tech-

niques with FCA. The main idea was that the user searches for concepts, using LSA, which retrieve

a list of the most relevant source code elements, and then it is applied FCA to create a lattice of

concepts. The granularity chosen in this context was at method level. To apply FCA, the results from

the query created by the user, are analyzed, and the top k attributes derived from them are selected.

FCA then, does its part. The results, from the experiments, showed that for small programs with a

small number of methods the vizualization of concept lattices is quite effective in PC, by showing

the relationship between concepts or topics.

3.3 Summary

IR is a discipline of Software Engineering that emerged on the creation of the World Wide Web. It is

focused on the search and retrieval of unstructured documents, responded to a necessity, expressed

in the form of queries.

On IR there are two factors that affect its sucess: the user's task which is the translation of the

necessity of the user into the form of a query that the IR system can interpret; and the logical view

of the documents, which is the defined structure that represents the database of the documents in

the system.

The process behind a typical IR system is divided into two stages. The first stage is called

indexing and corresponds to the definition of the logical view of the documents. The second stage

is called retrieval, which is defined as the stage that starts with the creation of a query and its

processing, and ends with the retrieval of documents that responds to that query, properly ranked.

Several models have instantiated this one, however, in the literature, the most referenced ones

are the VSM, the LSA, the PLSI and the LDA.

One of the main concerns of this IR area is to find solutions to enhance PC. In particular, the

37

Comment Analysis for Program Comprehension

developed approaches focused on addressing the concept assignment problem, which is the search

of problem domain concepts on the source code.

38

Part III

Comment Analysis for Program

Comprehension

39

Chapter 4

Source Code Comments

The previous part has the goal of giving a full description of the PC field, and includes an overview of

the use of IR techniques to help on the understanding of a program. Typically every approach found

on the IR for PC state-of-the-art builds the document database using terms from comments and

identifiers. This is explained by the fact that these two different entities provide the semantic side of

source code, through the content of natural language terms which are familar to the programmer

and are contextualized in the Problem Domain. It it through them that the search for concepts on

code can be effective and successfull.

Putting aside semi or fully automatic techniques for PC, source code comments are probably

the best source of semantic information that can provide straighforward and quick answers about

the Problem Domain concepts behind a piece of code, without the use of any tool. Moreover, this is

the main goal of a comment. Comments have the sole purpose of aiding the human reader [97]. As

mentioned before, comments contain terms of the Problem Domain written in a natural language.

Furthermore, comments can be composed by sentences which structure these terms in an effective

way to aid on the comprehension of the respective piece of code.

However, there is a lot of controversy about the content of comments and also about the use

of comments on source code. Comments can contain the explanation of the source code and also

the way to use that source code (in the case of a function/method or class comment). However,

there are those, such as the apologists of Extreme Programming (XP), which preconize the creation

of self explanatory source code, instead of using comments.

The controversy of using or not using comments is not relevant in this context. The important

at the moment is to see comments as a natural tool that help understand programs.

40

4.1. Types

In the literature, the study and analysis of comments has not been very extent to the moment.

However, in this chapter, it is given an overview of the characteristics of the comment as an element

of source code and as a documental piece, as available in the literature. This chapter starts with the

enumeration of the different types of comments on Section 4.1. Then on Section 4.2 it is presented

a taxonomy of comments on terms of different types of content. On Section 4.3 there is presented a

small study of the characteristics of the language normally used to write the contents of comments.

There is also included an overview of the literature of the relations between comments and the size

of the program, on Section 4.4. This chapter ends with Section 4.5, that includes a small study

about the available literature on the subject of comment density and the practice of commenting on

the development of software.

4.1 Types

A comment is one of the elements of the document structure of the source code [97], which is

defined as the set of elements which do not take part of the programming language in question.

These also includes white spaces (indentation, etc.) and choice of names or identifiers. As was

mentioned before over comments, this structure has only the main goal to provide information that

can be relevant for program understandibility.

In terms of types of comments, they can be divided into two types: line or inline comments

and block comments. The only differences between these two types is the number of lines they

can contain and the syntax to define them. The inline comments can only contain one single line,

whereas block comments can contain one or more lines. Each programming language can provide

one or both types of comments in its language grammar. The JavaTMprogramming language [38], for

example, provide both types of comments in its syntax, and also a variation of the block comment

called Javadoc [46]. This special type of comment, can only be used to comment classes and

methods, and is defined by a special syntax, which includes a set of tags, such as the author, the

version, the parameters of the method if applicable, amongst others. This type of comment can be

then preprocessed by the Javadoc tool, which builds an HTML file with the API of the source code

in question.

Each programming language can vary on the syntax given to the definition of each type of

comments. Considering for example, the Java programming language, it defines inline comments

41

Comment Analysis for Program Comprehension

as shown on Listing 4.1.

Listing 4.1: Inline Comment

1 // T e x t o f t h e Comment

As for the block comment, Java defines them as shown on Listing 4.2.

Listing 4.2: Block Comment

1 /∗

2 T e x t o f

3 t h e Comment

4 ∗/

An example of a Javadoc comment can also be seen on Listing 4.3.

Listing 4.3: JavaDoc Comment

1 /∗∗

2 ∗ Comment o f me thod e x amp l e

3 ∗

4 ∗ @param param1 P a r am e t e r o f t h e me thod

5 ∗ @param param2 O t h e r p a r am e t e r o f t h e me thod

6 ∗ @ r e t u r n v o i d

7 ∗ @au t h o r A u t h o r o f t h e c o d e

8 ∗/

9 v o i d e x amp l e (i n t param1 , i n t pa ram2)

10 {

11 . . .

12 }

4.2 Content

As was mentioned before, there is still a lot of controversy around the content of comments, which

raises the question of what is a bad or good comment. Apart from the controversy, a bad comment

can start from being a comment which is inconsistent with the code which is commenting, and that

leads to the misleading of the person who reads it [94].

42

4.2. Content

In [71] the authors explored the content of comments on operating system code, and defined a

taxonomy for comments. Below there is presented the most relevant cattegories and subcattegories

of this taxonomy:

Type Includes the following subcattegories: Unit and IntRange.

The Unit subcattegory includes comments which indicate the unit of a variable. For example,

a variable which represents a value of capacity, can be commented indicating that the capacity is

defined in litres or centilitres (Listing 4.4).

Listing 4.4: Unit Comment

1 f l o a t c a p a c i t y ; /∗ c a p a c i t y i n l i t r e s ∗/

The IntRange subcattegory includes comments which indicate the range of a variable. For

example, a variable which represents a value of an angle in degrees, can be commented indicating

that the range for the variable is from 0 to 360 degrees (Listing 4.5).

Listing 4.5: Range Comment

1 f l o a t a n g l e ; /∗ a n g l e f r om 0 t o 360 d e g r e e s ∗/

Interface Includes the following subcattegory: ErrorReturn.

The ErrorReturn subcattegory includes comments which describe the return values from a func-

tion that indicates errors.

Code Relationship Includes the following subcattegories: DataFlow and ControlFlow.

The DataFlow subcattegory includes comments which indicate the dependance of data from

variables or functions.

The ControlFlow subcattegory includes comments which may indicate:

• a piece of code not reachable;

• a missing break statement is intended;

• which function should be the caller of another function;

• the order of invokation of a given group of functions.

43

Comment Analysis for Program Comprehension

PastFuture Includes the following subcattegory: TODO or FIXME.

The TODO or FIXME subcattegory includes comments which indicate tasks that have still to be

completed or enhance code which has errors.

Meta Comments which include information regarding copyright notices, authors, dates, amongst

other types of meta information.

Explanation Includes all the types of comments which can not be classified by the previous

cattegories and subcattegories.

The first four cattegories of comments were defined by the authors as exploitable comments,

due to the fact that they can be used by other tools, such as bug detection tools and editors.

4.3 Comments and Language

It was already discuss that comments contain natural language terms structured in sentences of

that same natural language. In [34], the authors examined the language included on comments.

As a matter of fact, comments who are almost written in the English language, include only a part

of that language, called a sublanguage. For the record, a sublanguage contains a limited set of

the vocabulary from the main language, restrictions on syntactic and semantic constructions, as

they tend to be repetitive. According to the study, the sublanguage of comments has the following

characteristics:

• the present tense, indicative or imperative mood, is almost always used;

• limited set of verbs which include: is, uses, provides, implements, reads, writes, etc. In

resume, verbs mainly from the program domain.

• personal pronouns are rarely used;

The terms included on comments was also studied in detail. In [39] the authors explored the

existance of Problem Domain terms on the comments and identifiers of several programs. This

study was basically developed by creating a list of Problem Domain terms, the authors though were

related to the programs in study, and measuring the percentage of terms included on comments

44

4.5. Comment Density and Practice

and identifiers. The results showed that about 23% of the Problem Domain terms of the lists (135

terms) appeared on the comments alone, whereas only 11% appeared on identifiers.

4.4 Comments and Program Size

The importance of comments for understandibility purposes is inquestionable. However, on large

production of software, where the understandibility is a key factor, it may not be easy to continue

commenting and maintain the comments updated, throughout the evolution of the source code. To

access this matter, the authors in [36] analyzed the co-evolution of comments and source code on

several software systems. The main conclusions of this study were the following:

• comments and source code rarely co-evolve in time, as new added source code is barely

commented;

• when there is a co-evolution of source code and comments, mostly classes and methods are

targeted for commenting;

• in 97% of the time, comment changes are triggered by source code changes.

However, the conclusions of this study does not coincide with the conclusions of a similar study,

described in [41], which accessed the evolution of comments on PostgreSQL [66] source code, par-

ticularly on function declarations. Contrary, to the previously described work, this study concluded

that the percentage of commented functions maintained consistent throughout the evolution of the

system.

4.5 Comment Density and Practice

As was mentioned before, there is a lot of controversy around the use and amount of comments

on source code. On those who support the use of comments, there is not a clear idea of how

many comments should a program contain. As there is no standards on the use and amount of

comments, software communities have followed their own principles regarding the commenting

practice and density. In [7], the authors analyzed the practice of commenting on a particular

software community, open source, in order to access the principles of commenting followed by this

45

Comment Analysis for Program Comprehension

community. The first conclusion of this study is that about one line of code in five lines (around

19%) is a comment line. The second conclusion, which was related to the influence of programming

languages on the commenting practice, showed that Java programs tend to be more commented

that programs from other programming languages. The other conclusions, show that the comment

density are independent from the development team size and from the project size.

Another similar study, described in [4], analyzed the relation between the comment density in

a project and the stability of this one, throughout an empirical experiment. The results from this

study showed that projects with a higher level of comment density have more tendency to be more

stable throughout the updgrades.

In the same way, the authors in [91] performed a study about the quality characteristics of open

source development. To do so, they used a proprietary set of tools, called Logiscope c©, that apart

from calculating and measuring these characteristics, also contains its own programming standard

that is the result of the analysis of millions of source code lines of industrial applications, and it

is known that several large corporations use these standard to control their software development.

One of these standards is the comment frequency or density, that quantifies a factor of quality called

self descriptiveness, which is one of the principles of ISO 9241. The rule, for Logiscope c©and for

this study, was that this frequency must be at least of 20%. This value is much alike with the results

from concluded in [7], which is of one line of comment per five lines of code.

4.6 Summary

A source code comment is an element of source code, whose function is considered to be of only

providing information for understandibility purposes. However, on several sectors of the Software

Engineerin there is still controversy and discussion about the real utility of the comments.

On terms of syntax, apart from the fact that are different types of comments according to the

programming language at hands, they can be divided into two different groups: the inline comments

and the block comments. The first only permits the introduction of one line of comment, whereas

the second permits several lines.

On terms of content, there is also a taxonomy for comments. In general, comments can divided

into six different groups on terms of content: type, interface, code relationship, past future, meta

and explanation.

46

4.6. Summary

There was also identified that comments, in general, have a particular language that is con-

sidered a sublanguage of a certain natural language, such as the English one. In particular, this

language have a limited set of verbs and tenses that are used, and personal pronouns are almost

not used.

Although commenting is a good practice it may not be so easy to do on large production of

software. A study have shown that in general there is not a pair evolution between source code

and comments. However, there was also an other study that contradicted this previous one, by

presenting proves of this co-evolution.

There is not a standard for the amount and percentage of comments on the source code. A

study in this question, have defined that on open-source project, that tend to include high percentage

of comment, and a high percentage of comment quality, almost 19% of the source code was for

commenting. There was also a study that concluded that programs with a high density of comments

tend to be more stable throughout time.

47

Chapter 5

Comment Analysis For Program

Comprehension

The previous chapter gives an overview of the characteristics of comments as source code elements,

as it is seen on the literature. As wasmentioned, comments have the goal of helping the programmer

understand unknown or unfamiliar pieces of code, and in general, to help understand the hole

program. Therefore, comments may be considered a native and natural PC tool.

However, saying that the goal of comments is to understand programs is not sufficient to garan-

tee that this is attained. As was mentioned before, the quality of comments is directly related with

the easiness on the comprehension task at course. So, for understandibility purposes it is necessary

to garantee good comments.

The nature and content of comments is already discussed on the previous chapter. In this

one, it is discussed if comments do help on comprehension and why. This subject is focused on

Section 5.1, that includes several studies that explored that suspicion. Taking this, several works

on PC, have taken advantage of the comments nature to produce PC approaches, apart from

those described on the previous part, which use IR techniques. These works are enumerated and

described on the end of this chapter, on Section 5.2.

5.1 The role of comments on Program Comprehension

Comments have indeed the incredible power to aid programmers understand code with or without

read it. Considering this, several authors have conducted a number of experiments to prove the

48

5.1. The role of comments on Program Comprehension

importance and role of comments on the comprehension of programs.

One of the first experiments was conducted in 1981 by Woodfield et al. in a work described

in [104]. This intended to measure the effect of comments and also of modularization on the

understanding of a program. The principles of this experiment where the following: forty eight

experienced programmers, graduated and undergraduate, were chosen to participate in this study;

the programmers were divided into groups of eight; to each group it was given a different version of a

Fortran program and an equal test quiz about the program; half of the groups contained versions of

the program with comments and the other half contained versions without comments; to maximize

the need for a comment comprehension approach every version contained meaningless identifiers

and the indentation was removed. The results from this experiment showed that the groups which

were given commented versions were more able to answer to a bigger quantity of questions correctly.

The authors also pointed out that these results, regarding comments, were independent from the

modularization, which indicates that the comments alone provided a significant help for program

comprehension.

The experiments regarding the role of comments on PC continued in 1985 in [95]. In this work,

the authors described an experiment which aimed at study the effect of comments and modulariza-

tion in the readability of the Banker's Algorithm. In this case, the authors defined readability as the

quickness and accuracy of critical information that a programmer is able to extract from a program.

This experiment followed the same patterns of the previously described one. The results showed

that only comments produced more readability for the experiment subjects regarding the algorithm

at study. Another experiment from the same authors was conducted and described in [96]. Again,

the results showed the readability gain that comments produce.

The most recent experiment available on the literature, regarding the role of comments on pro-

gram comprehension is described in [70]. In this case this experiment contained slighter different

goals from the previous ones. This experiment aimed at studying the differences between the un-

derstanding of programs using class or method comments. Again, the same patterns were followed

to proceed with this experiment: there were versions of the same program, with both types of com-

ments, with only one type of comments and without any comments; the subjects had to answer to a

test quiz regarding the program at study. Corroborating the results from the previous experiments,

the authors concluded that the versions with comments were better understood than those which

did not contain comments. Regarding the differences between class and method comment under-

49

Comment Analysis for Program Comprehension

standing, the results showed that the subjects which had a method commented version performed

better on the quiz than those which possessed a class commented one.

Apart from the experiments, several authors have addressed the subject of the role of com-

ments on PC. Commenting on the theory that the best documentation for a computer program

(...) includes a smattering of enlightening comments proffered by Kernighan and Plauger in [43],

Brooks have also defended in [17] the importance of comments on the understanding of programs.

In this case, Brooks goes further by defining comments as a mean of establishing a bridge between

different knowledge domains, specially between the Program and Problem domain, mentioned and

overviewed on the previous part. According to the author, the programmer who writes the source

code must be aware of this fact, and when commenting, he should incorporate information which

ease the establishment of this bridge between the two domains.

5.2 Comment Analysis Program Comprehension tools

In the previous part, it is described some approaches for tools for PC purposes which were based

on IR techniques. In this case, these techniques took advantage of the content of source code to

develop the document database, specially from comments and identifiers. However, apart from the

IR approaches, there is a significant lack of tools that take advantage of comment information to

automatize program comprehension.

The only approach available on the literature which is the exception is the one developed by Vinz

and Etzkorn and described in [98]. In this work, the authors propose a comment to code matcher.

One of the problems that the authors faced was the difference between the abstraction levels of

both domains, and they had to do this mapping with some accuracy. They considered individual

lines of code, as well as methods, classes or functions that had comments attached. To analyze

comments, they took advantage of PATRicia [33], a system that applies natural language processing

techniques to analyze comments and identifiers of a program. This system uses a sentence parser,

that has information of standard comment syntactic structures and identifiers formats. It has also

a semantic processor that uses a knowledge base which represents concepts in the form of a

hierarchical semantical network. In order to do the code understanding, they took advantage of

the same knowledge representation and inference engine of PATRicia. To do this mapping, they

analyzed each domain individually. On the comment understanding, they detected occurrences of

50

5.3. Summary

words and infer relationships between them to detect concepts. On the code understanding, they

analyzed the structure of code and the order and nature of the statements on program to infer some

concept, or standard algorithm. In the end, if in both domains the same concept was found, they

could consider that the comment matched the code. This solution lead to successful results, taking

the authors to conclude that it could be applied to a practical application size [98].

5.3 Summary

The role of comments on PC is a major concern of several authors and researchers. In order to

study the real power and role of comments as catalyzing tools of comprehension, these authors and

researchers have executed several tests with human subjects. These studies aimed for the same

goals and used the same principles: using versions of the same program, one without comments

and another with comments, the subjects had to solve a quiz test about the program. The results

showed that, in all the cases, the subjects with commented versions were more able to understand

the programs fast and with more effectiveness.

More than simply stating that comments do help on comprehension, Brooks have enumerated

the reasons comments can be effective for PC, by defining them as privileged sources of Problem

and Program Domain information that ease the process of establishing bridges between the two

domains.

Although comments have been confirmed as extremely useful for PC, lacks the variety of ap-

proaches that uses comment information to enhance PC, as they all address the problem using IR

techniques. The only exception is an approach developed by Vinz and Etzkorn. This approach uses

techniques such as the introduction of semantic processors, semantical networks and knowledge

bases. Although the authors assume good results returned by this work, the last reference dates

from 2008, and there is no sign in the literature that this project was updated by the original authors

or by different authors.

51

Part IV

Darius

52

Chapter 6

Darius: The first stage

Throughout Chapter 2 it is analyzed the importance of PC on the maintenance of a given software

system or program. This importance lead to the establishment of PC as a relevant area of study,

in which several theories have emerged to try to explain the comprehension process. Taking in

consideration some of those theories, several authors have taken advantage of them to develop

approaches and tools that try to enhance PC. As it was seen, most of them are based on IR tech-

niques (Chapter 3), that basically try to locate Problem Domain concepts on the source code, or was

it was previously mentioned, the addressing of the concept assignment problem. This adaptation of

IR techniques for concept location was mostly exclusive to the exploration of terms from comments

and identifiers, which reflect the Problem Domain information needed to understand the semantic

of a program.

In Chapter 5 it is addressed the subject of the role of comments on PC. The conclusion, from

several studies, is that comments can provide help and facilitate the process of comprehending

a given program. Taking this, the objective of the work described in this dissertation is to take

advantage of the analysis of source code comments to provide information for the enhancing of

PC. However, recalling Section 1.2, before developing such an approach, it is necessary to take in

consideration two major issues: the quantity and the content of comments on source code. Without

the fulfillment of these two factors, the development of a Comment Analysis PC tool is not feasible.

So, before proceeding for the development of the PC tool that analyses comments, it is neces-

sary to study in detail these two factors by performing two different tests. In order to execute these

preliminary tests that can prove the feasibility of the use of Comment Analysis for the development

of a PC tool, the first step was to develop a preliminary version of that tool that only had the goal of

53

Comment Analysis for Program Comprehension

running those tests. To this tool it was given the name of Darius1.

In this chapter the focus is on this preliminary study and on the results and conclusions extracted

from it. It starts with Section 6.1 that identifies the goals and the strategies to follow in order

to execute this study. On Section 6.2 there is introduced the first version of Darius, and the

presentation and enumeration, with the proper description, of each one of the modules included in

this version, as well of the graphical interface. This chapter ends with Section 6.3 that presents the

steps that were taken in this preliminary study, and also includes the presentation and discussion

of the results that were able to be extracted.

6.1 The Preliminary Study

As was mentioned before, the feasibility of the Comment Analysis PC tool was be dependent of two

different factors: the quantity and content of comments. In order to explore them, it was executed

two different tests that, respectively, tried to measure these two factors on a set of elements of study.

In this section are enumerated the objectives of these two different tests and the process that has

to be followed in order to properly execute the tests.

6.1.1 Comment Quantity

As it was referred on Section 4.5 there is no clear idea and no standards whatsoever about the

right amount of comments on source code. However, considering the work [7] mentioned on that

section, open source projects contain in average 19% of comments on their source code, and the

programming standard of Logiscope c©, also described in Section 4.5, also assumes a similar value

of one line of comment per five lines of code. So, assuming that value as a reference, a program has

a sufficient amount of comments, if they are at least 19% of the source code of the whole program.

Having established the objective of the test, it is important to define the strategy followed to

execute it. In order to calculate the percentage of comments on a program, it is necessary to

analyze each source code file of the program and count the number of lines and also the number of

comment lines. Then it is necessary to sum all the global values of number of lines and comment

lines for all the source files. So, the ratio of comments on source code will be given by the division

1Relative to King Darius I of Persia, the first known man to create the first bridge between Europe and Asia, on the
Bosphorus strait.

54

6.1. The Preliminary Study

of the total number of comment lines and the total number of source code lines.

6.1.2 Comment Content

Measuring the quality of the content of comments is not a straightforward task. In reality, that is

not even totally possible considering that there is no clear idea of what is a comment with quality.

However, recalling Chapter 4, a comment has only the objective of aiding on the comprehension

of programs. So, if comments have only that objective, it can be generalized the notion that a

comment's content with quality is one that provides effective and relevant information to the user

or programmer, which can lead him to understand, better and faster, a given program. Although

having a clearer notion of comment content quality, is it no yet possible to measure it with precision

in the moment. To do so, it would be necessary to execute similar tests, as those described on

Section 5.1, which had the objective of studying the role of comments on Program Comprehension

using human test subjects. So, it is necessary to create a better instance of comment content

quality that can be effectively measured.

It is important to pay attention to what is mentioned on Section 5.1, in which is stated that

comments provide effective help on the comprehension process, as they are a privileged mean

of establishing bridges between the Problem and the Program Domain of the program [43, 17].

Taking in consideration Brooks' idea, it can improved the previous notion of comment's content with

quality, by defining it as type of content that enhances the comprehension of a program by providing

information regarding the Problem and Program Domain and also the means to establish a bridge

between them. With this clearer notion, it is now more practical to measure and analyze it.

So, in resume, the testing of the comment's content's quality on a program must focus on the

analysis of the words on the comment, and check whether it is utilized information regarding the

Problem and Program Domain, in the form of terms which can be contextualized in those domains.

However, similarly to the comment quantity issue, there is no standardized value for the percentage

of those type of terms that must be included on the comments.

Despite this problem, it can defined as a reference the results from a similar study [39], which

is detailed on Section 4.3, that had the objective of calculating the percentage of Problem Domain

terms on comments and identifiers on the source code. This study showed that comments from

the studied programs included, in general, 23% of the Problem Domain terms of the created lists.

Although this study had not studied the percentage of Program Domain terms, it can be assumed

55

Comment Analysis for Program Comprehension

that this frequency is at its minimum the same value.

And so, with this information, this preliminary study of the comment's content can be performed

by calculating the percentage of Problem and Program Domain terms included on comments taking

in consideration the values from the study mentioned before.

To perform this study, the strategy was be very similar to that described in [39]. For each pro-

gram at study, it was created a list of Problem Domain terms by analyzing the Problem Domain in

which the program is inserted. Then, a general list for Program Domain terms was also created

taking in consideration the programming language used for each program. To analyze the percent-

age of terms from both domains that appear on the comments, each different word was saved in a

structure, and in the end it will be counted the number of terms from the lists that are saved on the

created structure.

6.2 Darius: Version One

The first version of Darius had only the objective of executing the preliminary test previously de-

scribed. So, taking in consideration the requirements that these test demanded, this first version of

Darius included the following components (Figure 6.1):

• a comment extractor that withdraws comments from source code files and a code associator,

that associates each comment with the piece of code (classified according to the grammar

type: class, method, statement, and so on) it is commenting;

• a statistics calculator that provides quantitative results regarding comments in a program;

• a comment words analyzer which computes the frequency of words on comments, informa-

tion that can be used to identify the domain of each word;

• a graphical interface which can be used to visualize all the information provided by the other

components.

Now, for the programming language that Darius is able able to analyze the comments from, if

it is recalled Section 4.5, it is there mentioned a study that proved that in general Java programs

are usually more commented that other type of comments. So taking in consideration this fact, the

decision was that Darius would analyze Java source code files and its comments.

56

6.2. Darius: Version One

The following subsections describe in detail each of the components mentioned above.

Figure 6.1: Darius First Version Structure

6.2.1 Extracting and Locating Comments

The first and essential component that Darius has is the comment extractor. In order to extract

comments from a program or a software project, it is necessary to represent these entities first.

To do so, Darius defines an abstract class called Project that can be instantiated on the class

JavaProject. An object of this class represents a given program or software project. To build it,

it is necessary to pass a path for the folder where the source code files of the desired program

reside. Darius will then walk recursively through the folder defined in the passed path, looking for

Java source code files, files with a ".java'' extension. Each time Darius finds a Java source file, it

creates an object of the class JavaSourceCodeFile that represents that given file, and adds it to a list

associated with the JavaProject object. By doing this, in the end, this object will contain a list of all

the Java source files that Darius was able to find. Whenever Darius builds a JavaSourceCodeFile

object, the content of the file is extracted and associated to the new created object, along with the

path to the file. The content of the file is analyzed in order to extract the respective comments. In

the Java programming language there are three types of comments:

• InLine comments, IC for short, (//...)

57

Comment Analysis for Program Comprehension

• Block comments, BC for short, (/* ... */)

• JavaDoc comments, JD for short, (/** ... */)

These three types of comments are extracted from the source code using regular expressions.

The use of regular expressions in spite the use of a parser, is explained by the fact that not all types of

comments take part of the Abstract Syntax Tree (AST) (javadoc only) extracted by a parser. Although

there are approaches [89] that try to associate inline and block comments with syntactic nodes in

the AST, by changing the Java grammar rules, the extraction of comments in Darius pretends to

be as generic as possible for every Java source code file. In order to discover and identify what type

of source code entity is associated with the comment, the next line after the comment is extracted

too. Considering the Java programming language, Darius associates comments with:

• classes,

• interfaces,

• methods,

• conditionals (if),

• loops (while and for)

• switches.

To execute this extraction, Darius contains a class called JavaCommentExtractor that extracts

comments from a given input. This class contains a different type of regular expressions to every

different type of Java comment. An object of this class receives an input text and searches for

patterns from the various regular expressions. Whenever it is able to find one, it builds an object

that represents the respective comment. This object is from the abstract class JavaComment and

can be instantiated in one of the following classes, according to respective type of comment found:

JavaSingleComment, JavaBlockComment and JavaDocComment. To build these types of objects,

it is necessary to pass two strings: the content of the comment found and the next line after this

comment. To every object of these three types of classes is associated an other object of the

Enum type JavaCodeAssociation. This Enum type defines the code entity that is associated with the

comment, and can be of the 6 types mentioned above. To identify these types, the JavaComment

58

6.2. Darius: Version One

class contains 6 different types of regular expressions that are used to search for the right source

code entity in the next line string that was passed earlier.

So, in resume, in the end, Darius will have a JavaProject object that contains a list of Java-

SourceCodeFile objects, each of whom will contain a list of JavaComment objects instantiated onto

JavaSingleComment, JavaBlockComment or JavaDocComment. To each of this objects it will be

associated an Enum type JavaCodeAssociation.

6.2.2 Comment Statistics

In order to develop the first preliminary study about the quantity comments on a program, Darius is

able to calculate statistical values about the commenting practice on a program or software project.

This preliminary study focused, more specifically, on the ratio between the number of comment

lines and the number of source code lines. However, and taking in consideration that this would

be a very simple task, that would present simplistic values, the decision was to enlarge the power

of this statistic calculator by adding more statistical functions that could give important information

about the commenting practice on a program. Thus, the Darius statistic calculator includes the

following statistical functions:

• Number of comments of a project (global, per type of comment and per line of source code);

• Average number of comment lines per lines of code;

• Average number of lines of a non inline comment;

• Average number of each type of source code entity which is commented;

• Type of comments most used (global and per source code entity).

In order to calculate all of these statistics Darius has defined a class called JavaProjectStatis-

tics. To build an object of this class it is necessary to pass a JavaProject object. This object will walk

through all the JavaSourceCodeFile objects on the JavaProject object and the respective JavaCom-

ment objects, and will extract all the information it needs. In particular this JavaProjectStatistics will

extract the following information:

1. total number of files;

59

Comment Analysis for Program Comprehension

2. total number of source code lines;

3. total number of comment lines;

4. total number of comments;

5. total number of inline comments, block comments and javadoc comments;

6. total number of each type of source code entity;

7. total number of each type of source code entity commented;

8. total number of each type of source code entity commented per type of comment;

With all of this information, this object can calculate the previously described statistical functions.

For example, with the value of 4 Darius indicates the total number of comments on a given program

or software project, and with the 5 this total number is specified by the different types of comments.

By dividing the 3 value with the 2 one, Darius calculates the ratio of comment lines per source code

line. These are just two examples of how Darius can calculate all of statistical functions previously

mentioned.

6.2.3 Comment Words Analyzer

The second preliminary test focused on the analysis of the domain of the words included on com-

ments, verifying if they are Problem or Program Domain oriented. The strategy created to perform

this test is fully detailed on Subsection 6.1.2. In resume, this strategy involves the creation of 2

lists of words, each for a different domain, and also involves the accounting of those words that

are present on the comments. Similarly to the idea presented on Section 6.2.2, this task was very

simple, so the decision was to enforce the power of this analyzer by introducing other measures.

So, generally speaking, the comment words analyzer can return the following values:

• Percentage and frequency of words in the list found in comments;

• Frequency of each type of comment that contains words from the list;

• Frequency of each type of source code entity commented that contains words from the list.

60

6.2. Darius: Version One

In order to perform all of these calculations, Darius has to know which words appear on the

comments. To do so, there is a class called JavaCommentsWords, whose object must be build

by passing a list of JavaSourceCodeFile objects from a JavaProject object. But before checking

which words occur on comments, this JavaCommentsWords objects loads a list of "stop-words'',

words that are too frequent or that not have any significance. Then, this object walks through all the

JavaSourceCodeFile objects, extracts the content of the respective comment and breaks it into a list

of individual words. To each of the words from that list, it is checked whether the word corresponds

to an identifier, particularly if it is written on camel-case. If this is the case, the word is broken into

smaller words. Then, each word is passed to lower-case and is reduced to its respective stem using

a proper English stemmer2. Then the resulting word is checked to see if it is a stop word or not. If

not, the word is added to a structure that associates it to the current total frequency on the comment

the word appeared, on the type of comment used and on the source entity commented. In the end,

Darius will have the complete list of words contained on the comments of the program or software

project.

To perform the analysis of the domains per se, Darius provides a class called DomainWordsAn-

alyzer that receives a JavaCommentsWords and a set of words. The DomainWordsAnalyzer object,

first reduces every word from the set to its respective stem. Then, with the resultant new set of

words, it walks through them and verifies if each one is included on the JavaCommentsWords ob-

ject. If so, there is a variable that represents the total words of the set found that is incremented.

Then, to perform the more advance calculations, it is also accounted the types of comments and the

type of source code entities commented using that word, in all the comments associated with the

word. In the end, this DomainWordsAnalyzer object will contain the number of words from the set

that were present on the comments, the total occurrence of those words, and the total occurrence

on the different types of comments and the different types of source code entities commented. With

these values, Darius is able to present the functions mentioned above.

6.2.4 Graphical Interface

In order to execute these preliminary tests with more efficiency and to increase its pace, the decision

was to create a graphical interface for Darius. This graphical interface pretended to be the most

simplistic one, as it was not important to pay attention to extreme design details, that would just

2Snowball Stemmer by Martin Porter, http://snowball.tartarus.org/

61

Comment Analysis for Program Comprehension

spent valuable time with no special gains whatsoever. After some time of though on the design of

the graphical interface for this first version of Darius, the decision was to focus on three important

components that should be incorporated: the project or program loader, the comment statistic

calculator and the comments words analyzer.

So, after developing the graphic design of these three components the result could be incor-

porated on the graphical interface of the first version of Darius. The final result can be seen on

Figure 6.2. As it can be seen on this figure, the three components mentioned above, are the main

focus of this graphical interface. On the top, there is the design of the project loader component

as it can be seen on Figure 6.3. If the user clicks on the Load Project/Program button, a window

opens as it can be seen on Figure 6.4. In this new window, the user can choose a folder where lies

Java source code files, which of whom he wishes to be analyzed by Darius.

Figure 6.2: Darius Graphical Interface

Figure 6.3: Button to load a Project/Program

Now that a program or software project if fully loaded, there is the possibility of exploring the

other two components through the graphical interface of Darius. These two components can be

62

6.2. Darius: Version One

Figure 6.4: Loading a Project/Program

selected using the main tabbed pane on the center stage of the graphical interface. If the user

chooses the Comments Statistics calculator, the Darius graphical interface will present the same

result as it can be seen on Figure 6.5. If the user clicks on the Load Statistics button, Darius will

then explore the program loaded and calculate statistics regarding the commenting practice on

this program. In the end, the text area, on the center stage of this component, will be updated,

presenting the results calculated by Darius, as it can be seen on Figure 6.6.

Figure 6.5: Comments Statistics Calculator Graphical Interface

Selecting the tab corresponding to the Comment Words Analyzer, theDarius graphical interface

63

Comment Analysis for Program Comprehension

Figure 6.6: Results from the Comments Statistics Calculator

will present the graphical design of this component as it can be seen on Figure 6.7. In this graphical

design, there is a text area on the left side of the center stage, where the user can collocate a list

of words, that he wishes to be analyzed by this component, as it can be seen on Figure 6.8. After

entering the desired words, the user can now click on the Analyze button, and Darius will then

analyze these words in relation to the comments of the loaded program, using the Darius Comment

Words Analyzer. The results from this analysis will be then presented on the text area on the right

side of the center stage, as it can be seen on Figure 6.9.

6.3 Tests: Preliminary Study

As the development of the first version of Darius, and its graphical interface, was conluded it was

possible to proceed for the objective of its development: executing the preliminary study that could

prove the feasibility of developing a PC tool that uses comment information. The strategy and goals

of this preliminary were already introduced on Section 6.1. The first step was choose the programs

or software projects that would serve as objects of study. This choice and the reasons for it are

presented on Subsection 6.3.1. Then, with the set of objects of study completely established, it was

possible to proceed for the execution of the preliminary study. This was divided into two different

tests: comment quantity and comment content. The results for the first test are presented on

Subsection 6.3.2 and for the second one are presented on Subsection 6.3.3.

64

6.3. Tests: Preliminary Study

Figure 6.7: Comments Words Analyzer Graphical Interface

Figure 6.8: List of words to analyze

65

Comment Analysis for Program Comprehension

Figure 6.9: Results from the Comments Words Analyzer

6.3.1 Objects of Study

In order to perform this preliminary study, it was selected 10 software projects3 written in the Java

programming language. In this case, all of these 10 software projects are open-source. The choice

for the use of open-source projects had two motives: the first is that the source code is totally

free; the second motive is that open-source software projects are highly used by the community

to change and manipulate the source code over and over again, and so, the comprehension tasks

that these projects need tend to be more necessary, and so commenting can be a proper way of

helping on these tasks. The selected projects are described on Table 6.1. The selection of these

particular software projects has not followed any particular criteria, apart from the constraint that

their Problem Domains should be different.

6.3.2 Comment Quantity

As was previously mentioned, the first test of the preliminary study is about the quantity of comments

on the set of programs or software projects presented on the Subsection 6.3.1. The strategy applied

in this test is fully described on Subsection 6.1.1. In resume, this was based on the calculation of

the ratio between the number of comment lines and the number of source code lines. According

3These projects were retrieved from the SourceForge repository---http://sourceforge.net---in December 2010.

66

6.3. Tests: Preliminary Study

Project Description Files LoC Classes
iText PDF Library 480 145666 403

ganttproject Project Management Library 530 68945 394
gwt-dev Google's Web Toolkit 987 192738 803
jEdit Text Editor 531 176006 404
vuze Peer-to-peer client 3284 785935 2463
junit Tests Framework 154 10926 130

jfreechart Chart Library 989 313231 876
antlr Grammar Framework 221 85867 212

jexcelapi Excel Library 438 93876 166
robocode Programming Game of Robots 571 81519 485

Total 8185 1954709 6336

Table 6.1: Description and size of each selected project

to what is defined on Subsection 6.1.1, a program or software project must contain at least a ratio

of 19% between comments and source code. So in order to explore the comments of a given

program to enhance PC, they must be at least 19% of the whole program. However, and taking

in consideration what is mentioned on Section 6.2.2, that this would be a very simple task, it

was introduced several other statistical functions onto the Darius Statistics Calculator, that would

provide important information about the commenting practice on a program, information that could

be used for other purposes, apart from the PC purposes.

So, in order to execute this first test, each of the programs or software projects included on the

set of elements of study were loaded into Darius, and the Statistics Calculator was able to calculate

all of the comment statistics that it provides. The individual and global results of this first study of

comment quantity are presented on Table 6.2.

On Table 6.2 it can be seen the total number of comments (#CM), inline (#IC), block (#BC)

and javadoc (#JD); the total number of comment lines (#LOCM), the average of comment lines per

comment (LOCMPCM) and the average of comment lines per lines of source code (LOCMCPC), for

each project and the global results. The last value is the focus of this first test of the preliminary

study. As it can be seen on Table 6.2, only the software projects iText, jEdit, jUnit, jFreeChart,

jexcelapi and robocode respect the condition of the 19% ratio between comment lines and source

code lines. So, thinking about the preliminary study, only these projects, if they pass the second

test of the preliminary study which can be seen on Subsection 6.3.3, can be considered to explore

for PC purposes. Amongst these candidates, iText, jexcelapi and jfreechart are those who contain a

higher frequency of comment lines, with a value higher than 24%, almost one quarter of the whole

67

Comment Analysis for Program Comprehension

Type of Comments
Project #CM #LOCM LOCMPCM LOCMCPC #IC #BC #JD

iText 13343 35246 3.6 0.24 4930 3777 4636
ganttproject 4468 7544 2.99 0.11 2925 814 729

gwt-dev 12969 31648 4.25 0.16 7219 866 4884
jEdit 18986 37749 5.11 0.21 806 14421 3759
vuze 27723 64023 4.83 0.08 18245 2319 7159
junit 519 2281 4.99 0.21 2 77 440

jfreechart 22516 83934 4.86 0.27 6592 2530 13394
antlr 5292 11678 5.6 0.14 3903 1380 9

jexcelapi 8354 24227 3.58 0.26 2213 775 5366
robocode 5071 15657 6.39 0.19 3108 102 1861

Total 119241 313987 4.5 0.16 63633 13371 42237

Table 6.2: Comments Frequency in the projects (detailed analysis).

program.

Now that the main conclusions for the first test of the preliminary study were obtained, it is

now time to look for the other information extracted by this first test, that do not affect directly this

preliminary study, but can be important for other purposes. This can be seen on Tables 6.2, 6.3

and 6.4.

Looking at Table 6.2 it can be seen, that in average, the programmers from the software projects

in study use 4.5 lines to create a comment. It is important to note, that this value does not include

the introduction of inline comments, due to the fact that it only contains one line by nature. So

the conclusion is that block and javadoc comments include in average 4.5 lines of comment in the

set of objects of study. On Table 6.2 it can also be seen the total number of the different types of

comments. Without any doubt, inline comments are the most used type of comment, followed by

javadoc comments and in the end block comments.

Table 6.3 shows the percentage of source code entities presented on the source code of the

set of elements of study, that are effectively commented. The results provide interesting but rather

expected results. Classes, interfaces and methods are the most type of source code entities which

are commented, with a large difference of percentage in relation to the rest of source code entities.

This shows that programmers in this set of software projects, tend to comment more source code

entities with a higher level of abstraction. However, this can also be due to the fact that these source

entities have a less number of unities on the source code in relation to the others, and so they are

more easy to comment. Another important and interesting point to extract from this table is the

68

6.3. Tests: Preliminary Study

Project If For While Switch Class Interface Method

iText 5 7 7 7 89 90 76
ganttproject 5 5 3 8 57 41 18

gwt-dev 9 10 7 5 96 97 19
jEdit 9 8 4 2 86 79 61
vuze 6 6 5 7 45 46 24
junit 1 0 0 0 25 71 37

jfreechart 6 10 2 18 100 100 100
antlr 11 16 5 4 61 56 22

jexcelapi 14 18 12 0 99 100 88
robocode 7 11 12 3 76 94 20

Total 7 8 6 5 69 60 45

Table 6.3: Percentage of Source Code Entities (SC) commented (#SC commented / #SC)

Project If For While Switch Class Interface Method

iText IC IC IC IC JD JD JD
ganttproject IC IC IC IC JD JD JD

gwt-dev IC IC IC IC JD JD JD
jEdit IC IC IC IC JD JD JD
vuze IC IC IC IC JD JD JD
junit IC N/A N/A N/A JD JD JD

jfreechart IC IC IC IC JD JD JD
antlr IC IC IC IC BC BC BC

jexcelapi IC IC BC N/A JD JD JD
robocode IC IC IC IC JD JD JD

Total IC IC IC IC JD JD JD

Table 6.4: Most used type of comment per type of source code entity

fact that in jfreechart, all of the classes, interfaces and methods presented on its source code, are

commented.

To conclude, Table 6.4 shows the relation between a type of source code entity commented

and the most used type of comment used to comment it. The results show again another high

contrast between high level source code entities and lower level source code entities. In average,

the first group is mostly commented using javadoc comments, unlike the second group were the

inline comment is mostly used. With this, it can be concluded that Javadoc comments are mostly

for the use of high level commenting, leaving inline comments for the lower level commenting.

69

Comment Analysis for Program Comprehension

6.3.3 Comment Content

The second and final test of the preliminary study, that pretended to study the feasibility of creating a

tool that uses comment information to enhance PC, was about exploring the content of comments,

by checking whether it is used Problem and Program domain information, on the set of elements

of study presented on the Subsection 6.3.1. The stategy applied in this test is fully described on

Subsection 6.1.2. In this case, the objective was to measure the number of words from the Problem

and Program domain, enumerated on lists, that occur on the comments. The goal to succeed in

this test, is that about 23% of the words from the list must be included on the comments, being

this value a reference as it is explained on Subsection 6.1.2. Although this calculation would be

sufficient to conclude this test, as it is mentioned on Section 6.2.3, this would be a very simple

task, so it was introduced other functions to the Darius Comment Words Analyzer, that provide

interesting information regarding the use of Program and Problem Domain contents on comments.

To execute this test, it was created a list of Program Domain terms for each of the software

projects presented on the set of elements of study, by checking the websites and manuals, looking

for terms on the requirements that are contextualized on the Problem domain. Each of the lists and

the respective program were submitted to the Darius Comment Words Analyzer, which returned the

values of the analysis. Then it was created a single list of Program Domain terms, just one, because

the programming language is the same for every project. Then the same routine was executed: this

list and each of the projects were submitted to theDarius Comment Words Analyzer, which returned

the values of the analysis. The results of all the analysis can be seen on Tables 6.5, 6.6, 6.7, 6.9, 6.8

and 6.10.

Table 6.5 shows the percentage of words from the lists that occurred on the comments of the

software projects, which was the objective of this second test of the preliminary test. Looking at

the table, it can be seen that every project has a percentage much more higher than the value of

reference, 23%, so they all pass this test. Taking in consideration the results obtained and explained

on Subsection 6.3.2, where only iText, jEdit, jUnit, jFreeChart, jexcelapi and robocode passed on the

first test, only these candidates passed this preliminary study, as they also passed the second test.

So, in conclusion, these software projects proved the feasibility of the development of a Comment

Analysis PC tool, and proved themselves as possibles subjects for the execution of tests of that

same tool.

Apart from the main conclusions that were the focus of this second test of the preliminary

70

6.3. Tests: Preliminary Study

Project Problem Domain Program Domain
iText 92.31 86.76

ganttproject 84.31 75.0
gwt-dev 56.34 86.76
jEdit 89.74 86.76
vuze 92.11 88.24
junit 81.82 67.65

jfreechart 86.36 89.71
antlr 88.24 83.82

jexcelapi 79.31 85.29
robocode 88.89 83.82

Total 82.21 83.38

Table 6.5: Percentage of domain words (DW) found (#DW Found / #DW)

study, there were other values regarding the use of Problem and Program Domain information on

comments, that Darius Comment Words Analyzer was able to calculate. These can be seen on

6.6, 6.7, 6.9, 6.8 and 6.10.

Table 6.6 shows the frequency of words from the lists on the comments. As it can be seen

on the table, in average, 11.61% of the total number of words included on comments are Problem

Domain oriented. However, this percentage is even higher in the case of Program Domain terms,

obtaining a 17.71% of the total of words. In total, almost 30% of the total terms presented on

comments, are Problem or Program Domain oriented. The differentiation of these values between

the type of comments and source code entities can be seen on Tables 6.7 and 6.9. Table 6.7

shows the frequency of words from the lists on the three types of comments. As it can be seen the

content of JavaDoc comments is the most oriented for Problem and Program Domain information,

as it contains the higher frequency for both domains. The block comments, on the other side,

are the type of comments with the least frequency of information, also on both domains. These

results are sustained by the values presented on Table 6.8, that shows the percentage of types of

comments that contain Problem and Program Domain information. As it can be seen, in average,

almost 74% of the javadoc comments contain Program Domain terms and 48% of them contain

Problem Domain terms. Once again, the block comment has the worst results in terms of Domain

information. On terms of Problem Domain words frequency, it has less than a half compared to the

javadoc comment, and on term of Program Domain the same ratio maintains.

In terms of source code entities, Table 6.9 shows the frequency of words from the lists on the

different types of source code entities commented. As it can be seen on the table, on terms of

71

Comment Analysis for Program Comprehension

Project Problem Domain Program Domain
iText 13.39 16.21

ganttproject 14.51 12.77
gwt-dev 2.27 20.99
jEdit 8.09 19.17
vuze 4.68 15.72
junit 22.5 25.52

jfreechart 15.89 20.62
antlr 13.84 12.78

jexcelapi 22.75 16.37
robocode 23.39 12.54

Total 11.61 17.71

Table 6.6: Frequency (%) of words of each Domain (#Total DW / #Total Words)

IC BC JD
Project Prob. Prog. Prob. Prog. Prob. Prog.
iText 13.05 13.99 6.89 14.1 14.7 17.36

ganttproject 13.76 13.52 14.78 11.58 14.67 14.2
gwt-dev 0.96 19.7 2.03 18.31 2.62 22.16
jEdit 5.1 17.15 6.44 24.76 9.28 16.69
vuze 4.6 18.02 5.14 11.38 4.29 18.89
junit 0 20.0 17.14 16.57 22.66 25.77

jfreechart 20.7 20.73 16.74 12.45 15.58 21.41
antlr 13.85 13.81 13.95 10.7 2.13 11.35

jexcelapi 10.38 16.16 17.08 12.97 24.97 17.01
robocode 17.0 14.06 16.52 12.6 25.13 12.5

Total 9.97 16.27 8.33 14.58 13.13 19.13

Table 6.7: Frequency (%) of words of each Domain per type of comment

BC IC JD
Project Prob. Prog. Prob. Prog. Prob. Prog.
iText 33.94 35.5 12.45 24.65 59.17 72.11

ganttproject 45.58 43.49 29.4 30.32 45.27 50.89
gwt-dev 7.85 71.13 5.25 37.37 19.68 78.05
jEdit 25.56 50.5 11.86 42.98 54.8 72.07
vuze 16.65 46.44 15.57 32.47 21.71 61.03
junit 0 50.0 27.27 29.87 77.73 82.95

jfreechart 48.18 48.97 33.16 25.94 56.87 86.23
antlr 66.16 71.96 31.9 30.0 11.11 33.33

jexcelapi 20.0 42.45 43.97 35.25 66.05 65.58
robocode 60.78 32.35 22.27 23.94 51.26 58.89

Total 34.87 47.79 18.11 33.55 47.6 73.72

Table 6.8: Percentage of each type of comments that contains the type of Domain words

72

6.3. Tests: Preliminary Study

frequency of Problem and Program Domain information, methods have the highest values. Almost

one third of the content on methods comments is Program or Problem Domain oriented. Apart

from the exception of methods, lower-level source code entities like ifs, fors, whiles and switches

have the highest frequency of Program Domain information. On contrast, methods, classes and

interfaces have the highest frequency of Problem Domain words. So with these two facts, it can be

created a relation between the level of abstraction of the source code entity and the nature of the

content on the respective comment: higher level source entities tend to have comments oriented for

Problem Domain information, whereas comments of lower level source entities tend to include more

Program Domain information. Table 6.10 shows the percentage of source code entities commented

that contains at least one word from the Problem and Program Domain list. From this table, as it can

be seen, it is sustained the the idea of the richness of Program and Problem Domain information

on the comments of methods. Another interesting fact extracted from this table, is that all of the

comments of interfaces on junit contain at least one word from the Problem Domain and one word

from the Program Domain.

73

Comment Analysis for Program Comprehension

If
Fo

r
W
hi
le

Sw
itc

h
C
la
ss

In
te
rf
ac

e
M
et
ho

d
Pr
oj
.

Pr
ob

.
Pr
og

.
Pr
ob

.
Pr
og

.
Pr
ob

.
Pr
og

.
Pr
ob

.
Pr
og

.
Pr
ob

.
Pr
og

.
Pr
ob

.
Pr
og

.
Pr
ob

.
Pr
og

.
iT
ex
t

8.
27

16
.4
5

6.
5

16
.6
1

5.
26

14
.4
7

3.
13

12
.5

17
.4
9

11
.6
9

18
.1
3

14
.2
3

13
.5
4

17
.5
3

ga
nt
tp
ro
je
ct

19
.0

9.
26

20
.6
1

14
.5

30
.0

15
.0

0
50

.0
11

.8
2

9.
87

5.
66

8.
02

15
.3
5

17
.1
4

gw
t-d

ev
0.
99

19
.9
9

0.
25

18
.4
8

2.
5

11
.6
7

0
33

.9
6

3.
57

18
.3
3

3.
34

16
.0
2

2.
33

23
.3
2

jE
di
t

5.
05

18
.1
5

4.
69

12
.0
2

3.
92

9.
8

3.
13

6.
25

9.
32

11
.3
1

9.
54

13
.2
1

10
.0
9

19
.8

vu
ze

5.
59

12
.5
8

4.
49

13
.2
9

3.
8

14
.4
5

1.
43

17
.1
4

3.
09

9.
02

4.
82

11
.3

4.
11

21
.0
8

ju
ni
t

20
.0

20
.0

0
0

0
0

0
0

24
.3
5

17
.4
1

19
.0
5

23
.8
1

23
.7
7

27
.1
4

jfr
ee

ch
ar
t

16
.1
8

16
.4
6

19
.3
3

14
.7
1

5.
0

15
.0

45
.4
5

0
17
.1
9

16
.8
4

15
.5

18
.6
4

15
.0
5

22
.4
6

an
tlr

13
.5
4

13
.7

8.
93

12
.3
9

9.
26

14
.8
1

0
32

.6
1

14
.8
4

10
.9
7

13
.0
3

14
.7
9

13
.7
8

14
.2
6

je
xc
el
ap

i
15

.7
5

13
.7

20
.9

12
.5
4

4.
82

15
.6
6

0
0

24
.9
2

12
.6
9

28
.2
8

25
.8
6

23
.6
2

18
.8
7

ro
bo

co
de

14
.1
2

14
.2
4

8.
42

23
.1
6

17
.3
9

21
.7
4

25
.0

25
.0

11
.9
9

5.
6

15
.6
6

6.
05

30
.0
4

14
.6
5

To
ta
l

7.
38

15
.1

7.1
9

14
.9
9

5.
87

14
.3
2

6.
04

22
.6
3

11
.1

12
.6
3

9.
58

13
.6
2

13
.2
4

20
.5
1

Ta
bl
e
6.
9:

Fr
eq

ue
nc

y
(%
)o

fw
or
ds

of
ea

ch
Do

m
ai
n
pe

rs
ou

rc
e
co

de
en

tit
y

74

6.3. Tests: Preliminary Study

If
Fo

r
W
hi
le

Sw
itc

h
C
la
ss

In
te
rf
ac

e
M
et
ho

d
Pr
oj
.

Pr
ob

.
Pr
og

.
Pr
ob

.
Pr
og

.
Pr
ob

.
Pr
og

.
Pr
ob

.
Pr
og

.
Pr
ob

.
Pr
og

.
Pr
ob

.
Pr
og

.
Pr
ob

.
Pr
og

.
iT
ex
t

21
.3
9

40
.0
6

17
.4
4

34
.8
8

11
.5
4

30
.7
7

5.
88

23
.5
3

78
.0
6

60
.8
3

81
.0
8

78
.3
8

50
.1
8

66
.4
3

ga
nt
tp
ro
je
ct

38
.4
6

23
.0
8

51
.7
2

44
.8
3

40
.0

60
.0

0
66

.6
7

31
.3
9

37
.2
2

23
.8
1

14
.2
9

46
.7
5

58
.6
1

gw
t-d

ev
4.
58

55
.9
9

1.
2

47
.3
1

12
.5

29
.1
7

0
83

.3
3

28
.3
3

73
.7
4

28
.5
7

72
.1
1

18
.0

79
.3
2

jE
di
t

16
.6
9

46
.6
8

17
.8
6

36
.9

11
.7
6

29
.4
1

14
.2
9

28
.5
7

63
.0
4

59
.0
3

75
.0

68
.7
5

43
.1
8

82
.1
4

vu
ze

18
.9
9

38
.7
2

14
.0
5

32
.4
4

11
.8
4

32
.8
9

8.
33

25
.0

13
.5
8

26
.5
4

18
.3
9

26
.0

22
.1
5

67
.7
3

ju
ni
t

50
.0

50
.0

0
0

0
0

0
0

87
.5

87
.5

10
0.
0

10
0.
0

75
.8
3

79
.4
6

jfr
ee

ch
ar
t

41
.7
6

44
.6
4

52
.3
8

39
.6
8

20
.0

40
.0

10
0.
0

0
72

.4
6

85
.6

77
.6
7

94
.1
7

53
.2
9

87
.2
9

an
tlr

38
.0
8

50
.1
2

29
.4
1

36
.7
6

30
.7
7

23
.0
8

0
10

0.
0

71
.5
4

65
.3
8

90
.0

80
.0

54
.7
6

60
.5
3

je
xc
el
ap

i
40

.3
5

38
.0
1

53
.4
1

38
.6
4

13
.0
4

43
.4
8

0
0

89
.7

60
.6
1

96
.5
5

79
.3
1

64
.5
1

77
.5
7

ro
bo

co
de

34
.6
5

50
.5

23
.9
1

50
.0

43
.7
5

43
.7
5

10
0.
0

10
0.
0

33
.6
1

26
.2
3

31
.9
4

37
.5

53
.8
1

66
.8
4

To
ta
l

22
.7

43
.5
7

21
.5
1

38
.3
9

16
.5
9

34
.1
5

11
.4
3

51
.4
3

44
.8
1

55
.4

35
.9
7

47
.0
9

45
.7
6

77
.3
5

Ta
bl
e
6.
10

:
Pe

rc
en

ta
ge

of
ea

ch
so
ur
ce

co
de

en
tit
y
co

m
m
en

tt
ha

tc
on

ta
in
s
th
e
ty
pe

of
Do

m
ai
n
w
or
ds

75

Comment Analysis for Program Comprehension

6.3.4 Discussion of the results

The objective for the development of the first version of Darius was to prove the feasibility of

creating a second version of it, that incorporated the exploring of comment information for program

understandability purposes. With Darius first version, it was possible to execute the preliminary

study that would prove that feasibility, by performing two different tests on a set of programs or

software programs.

The first test focused on the ratio between comment lines and source code lines, that would

determine the commenting percentage on a given program. If programs do not have a sufficient

number of comments, it is not worthy to explore the comment side of them to try to understand

it. Having a value of reference for that ratio, the results showed that from that set of 10 software

projects, only six of them had a higher or at least the same amount of comments percentage:

iText, jEdit, jUnit, jFreeChart, jexcelapi and robocode. However, this was sufficient to claim that this

first test of comment quantity have obtained success, so Question 2 from Section 1.2, has been

answered positively: there are programs like iText, jEdit, jUnit, jFreeChart, jexcelapi and robocode,

that have a sufficient amount of comments, taking in consideration a value of reference.

Having passed the first test, the focus was in the moment on the second test of the preliminary

study. The objective of the second test was to analyze the contents of the comments of the set

of software projects. In particular, this content analysis checked the use of Program and Problem

Domain information on comments, on the form of words. The strategy followed to conclude this

test was to create lists of words for the both types of domains and check which percentage of those

words were included on the comments. Having also a value of reference for this percentage, the

results showed that all of the projects contained a higher value for that reference, so they all passed

this test. With this fact, it is now possible to answer positively to Question 3 from Section 1.2: there

are programs like iText, jEdit, jUnit, jFreeChart, jexcelapi and robocode, that contain comments that

include problem and program domain information, having a value of reference for the percentage

of that information.

Having Questions 2 and 3 answered positively, 1 from Section 1.2 is automatically answered

as positive: it is worthwhile to use comments to develop a tool that explores comment information

to enhance PC. With this, it was possible to advance for the development of the second version

of Darius. The programs of software projects that pass the preliminary study were apt to be

candidates for subjects for this second version, and maybe be the proof for the success of this tool.

76

6.4. Summary

6.4 Summary

In order to proceed for the development of a Comment Analysis PC tool called Darius, it is neces-

sary to study the nature of comments, to see if they are worth to explore for PC purposes. To do so,

it was developed a preliminary study that explored two important factors that are directly affected

with the ability of comments as keys for comprehension: their quantity and their content.

To study the amount of comments or the percentage of commenting on the source code, the

strategy was to calculate the ratio between comment lines and source code lines, from a set of

objects of study, and compared it to a value of reference. If some program had at least that value

of ratio, it was able to pass this test, and the preliminary study could proceed for the second test.

In the case of the study of the content of comments, this was based on Brooks statement, that

comments help on the comprehension if they provide Problem and Program Domain information

and means to establish bridges between those two domains. To execute this test, the strategy was

to calculate the percentage of words from lists (with words from the Problem and Program Domain)

that occurred on the comments, and compared it to a value of reference.

In order to execute this preliminary study with more efficiency and pace, the decision was to

create a first version of Darius that included modules that provided means of executing the two

different tests. For each of the tests it was created a different module and a graphical interface in

order for the visualizing of the results to be more effective.

The first module or component created for Darius was the comment extractor, that extracted

comments from Java source code files using regular expressions. The next line of source code

line was also extracted and associated with the comment. The second module was the comment

statistic calculator that calculated the ratio of comment line per source code line, but also calculated

other important values regarding the frequency of comments on a given program. The third module

was the comment words analyzer that received a list of words and calculated the percentage of

those words that appeared on comments. Apart from just calculating this percentage, the words

analyzer included other important functions.

The first test of the preliminary study, who focused on the quantity of comments, showed that

six of the ten programs in test had the right amount of comments taking in consideration the value

of reference. From the other measures returned by Darius, important information were also able

to be extracted regarding the nature of the frequency of comments on the programs. In particular,

77

Comment Analysis for Program Comprehension

a non inline comment has in average 4.5 lines and the javadoc comment is the most used type

of comment. It was also able to conclude that classes, interfaces and methods tend to be more

commented, with a high difference to the others source code entities, and that these source code

entities are mostly commented by javadoc comments, whereas the others are mostly commented

by inline comments.

The second test of the preliminary study focused on the calculus of the percentage of words

from the Problem and Program Domain, inserted on a list, from the comments, showed that all the

ten programs contained a percentage higher that the value of reference. Other important conclu-

sions were also extracted from this study. In particular, almost 30% of the contents of comments

are Problem or Program domain oriented, on terms of words, but there is a higher frequency of

Problem Domain words. Javadoc comments is the most rich type of comment on terms of Domain

information. From these results, it was also able to make a relation between the frequency of the

different type of source code entities commented and the type of knowledge domain inserted on

comments: in general, lower-level source entities include more Program Domain information on

their comments, whereas higher-level ones include more Problem Domain information.

The results from the two tests have shown that the preliminary study was a success, and that

Question 1 was answered positively. There was conditions to proceed for the development of a

Comment Analysis PC tool.

78

Chapter 7

Darius: The second stage

Having Questions 2 and 3 from Section 1.2 been answered positively, and so forward, Question 1,

it was safe to move forward for the development of an approach that takes advantage of the source

code comments power to enhance PC, to try to answer to Question 4. This question raises the

problem of using source code comment information to enhance the comprehension of a program,

by providing it to the user in order for him to establish a bridge between the Problem and Program

Domain. This problem was already addressed by several authors, as it is mentioned throughout

Chapter 3. In that chapter are fully detailed several approaches that try to address this problematic,

by introducing IR techniques, and adapting them to the use of source code information, in order

to search for Problem Domain concepts on the source code, and in this way, providing means to

the programmer to establish a bridge between the Problem Domain and the Program Domain, that

would help him understand a program faster and with more efficiency.

Due to the multiple and variety of approaches of this kind that provided so many good results, the

best and wiser decision was to address this problem in the same way, by using the same strategies

and methods. Although there was the alternative of taking the direction of an approach similar to

the one described on Section 5.2 that provided quality results, the development of this approach

would be very hard and would take a lot of effort and time, as this would require the development of

a knowledge base, an inference system and a natural language parser, amongst other components

of high complexity. To this is added the fact that it is not proven that this approach provides better

results than the IR based ones, as in the literature, the second type of approach continues to be

explored and improved, as opposed to first type, that was not sustained, as the last reference to it

is from 2008.

79

Comment Analysis for Program Comprehension

So the next step was to create a second version of Darius, that would prepare it to explore

comments for the searching of Problem Domain concepts and to give possibility to find the maps

of these concepts on the source code. The development of this approach included the use of

IR methods and techniques to make this search possible. All of the information regarding these

techniques are fully available throughout Chapter 3. With these, the strategy was to adapt the idea

behind IR to comments, and create a search engine that would be prepared to answer to queries,

that correspond to the programmer needs of information regarding understandability. In this case,

it would be considered that with this tool, the user is looking for a way of seeing what piece code

corresponds to the materialization of a certain Problem Domain concept. For instance, if when

dealing with an unfamiliar software of store management, the programmer wants to change the

layout that the program uses to print the receipt of a sale, the programmer introduce in Darius a

query corresponding to that need, and Darius would provide the code, taking in consideration the

comments used, that answer to that need.

The strategy followed to address this problem is very similar to most of the IR for PC approaches,

that can be seen on Section 3.2

In this chapter the focus is on the second version of Darius, as having the capacity of enhancing

PC. The chapter starts with Section 7.1 that gives a detailed description of every module developed

for this second version, as well as the graphical interface, indicating and substantiating the decisions

that were made on the course of the development. Section 7.2 ends this chapter, presenting a

rigorous but enlightening test that was executed to explore the capacity of Darius second version, as

a PC tool. It includes all of the obtained results and also the proper discussion and the conclusions

extracted from those results.

7.1 Darius: Version Two

As was mentioned before, in order to address the concept assignment problem, this second version

of Darius, followed the same strategies followed by approaches of similar goals and purposes

and that are discussed throughout Chapter 3. In order to do so, this second version included the

following components (Figure 7.1):

• the logical view of the documents, or more simple, the implementation of the document

database, that stores all of the information that is included on the contents of the comments;

80

7.1. Darius: Version Two

• IR models that explore the information of the document database, and retrieve documents

according to the queries the users provide;

• a graphical interface that provides good user experience for a higher efficiency on the explo-

ration of the process of finding Problem Domain concepts using comment information.

The following subsections described in detail each of the components mentioned above.

Figure 7.1: Darius Second Version Structure

7.1.1 Document Database or Corpus Implementation

So the first step was to create the document database. In this case the decision was to choose

granularity at comment level, so each comment of a program will be considered a document in this

database or corpus. The reason for this decision comes from the fact that source files can have a big

size and can correspond to several Problem Domain concepts on code, and a granularity of this level

would turn very difficult the search of some specific and less generalized concept. So considering

81

Comment Analysis for Program Comprehension

granularity at comment level could provide to the user quick and straightforward answers to the

questions he has in reality.

Established the decision of considering granularity at comment level, it was time to focus on the

extraction and manipulation of the words that were going to be part of the inverted index (Section 3.1)

of the document database. The first step in this phase was to extract the words from the comments.

This is accomplished using an object of the class JavaCommentsWords, which of whom is fully

detailed on Section 6.2.3. Having the complete set of words from the comments is was possible

to build the document database. To represent it, Darius uses a matrix words × comments, which

defines the weight of a certain word on a given comment. To do so, Darius contains a class

called WordCommentMatrix, whose object receives a list of comments and a set of words, and

builds a matrix, array of arrays in this case, which in every position colocates the frequency of the

word, correspondent to the line of that position, on the comment, correspondent to the column of

that position. In the end, Darius will contain the complete matrix that represents the document

database. However the process is not yet complete. It was also necessary to redefine the weights of

the words on the documents, apart from the simple frequency. To do so it was applied the TF-IDF

algorithm, whose description is fully available on Subsection 3.1.1, and is also mostly used in IR.

With the application of this algorithm, the matrix would represent better the real importance of words

on the comments extracted.

7.1.2 Vector Space Model Implementation

With the document database fully defined, it was possible to build IR models that would explore

that database, and retrieve documents, or comments in this case, that correspond better for a given

query. The first and most simple implemented IR model was the VSM. The full description of this

model can be seen on Subsection 3.1.2. In Darius, the implementation of VSM is defined in a

class called VSM. To build an object of this class it is necessary to pass a WordCommentMatrix

object, that corresponds to the document database, as was seen on the previous section. Apart

from this, and taking in consideration the description of this model, there was nothing more to do

apart from doing queries to this model. To do so the VSM class contains a method that provides

the mean to execute a given query to this model. This method receives a list of words or strings

that correspond to the query of the user. This query is then defined as an array that has the size

of the total number of words of the inverted index of the document database. To build this array,

82

7.1. Darius: Version Two

Darius collocates the number one on the correct position for each of the words of the passed query.

Then it is necessary to execute this query. To do so, and as defined on Subsection 3.1.2, VSM

uses the cosine similarity to rank the query towards the documents or, in this case, comments.

The mathematical implementation of this algorithm is also described on Subsection 3.1.2. This will

be calculated between the query and each one of the comments, using the columns of the matrix,

previously build, and will return a value between 0 and 1. According to VSM, the value of the cosine

similarity is directly proportional to the similarity of the comment to the query.

7.1.3 Latent Semantic Analysis Implementation

Having the VSM totally defined inDarius, it was necessary to implement a more complex IRmodel,

which in this case would be the LSA. The description of this model and its implementation can be

seen on Subsection 3.1.3. In Darius, the implementation of LSA is defined as a class called LSA.

As well as the class VSM, detailed on the previous section, the construction of an object of the LSA

class, needs the passage of the document database or corpus in the form of a WordCommentMatrix

object. As it is seen on Subsection 3.1.3, LSA relies on the use of the SVD to factorize the matrix

and reduce its dimensions. As was seen before, this will permit a better approximation of words

and documents (comments) that are semantically connected. However, taking in consideration

the complexity of the development of a SVD algorithm, the decision was to incorporate the use

of a third-party SVD algorithm, which in this case is a SVD algorithm included on the S-Space

Package1. This algorithm takes a matrix, which in this case is the words × comments matrix,

and factorizes it into three new matrices as defined on the Equation (3.4) on Subsection 3.1.3.

However, this algorithm needs the attribution of the order number or was seen before, the number

of concepts, that provides the best approximation to the original matrix, and establishes the best

semantical relationships. According to the authors in [58] the optimal number of dimensions or

order is between 200 and 300, so the decision was to choose a value in between, that is 250

dimensions for Darius.

Having the model completely defined, in the end Darius will have three matrices as defined

on Subsection 3.1.3. The first one corresponds to the position of every word on the new semantic

space and the third one will have the comments positions. The second one will contain the single

values. With this matrices, it is now possible to execute queries to the model. To execute a given

1S-Space Package, available on http://code.google.com/p/airhead-research/

83

Comment Analysis for Program Comprehension

query, this LSA class contains also a method that provides that function. It only needs a list of the

words that take part of the query. And with it, this method ranks the query towards the comments,

defining which ones are more relevant to the query. The first step in this case, is to represent this

query into the new space that was build. To do so, Darius introduces an algorithm, fully detailed

on [13], that represents the query on the new semantic space in order to perform appropriate

ranking calculations. The mathematical model of this algorithm can be seen on Equation (7.1). q

in this case corresponds to the array of the query, and U and S are the same matrices defined on

Equation (3.4).

q = qTUS−1 (7.1)

With the query fully positioned in the new space, it is now possible to rank it in relation to the

comments on the corpus. The same principle, as the one applied on the VSM, is used, as the

cosine similarity is calculated to find out which of the comments are more related to the query

defined by the user.

7.1.4 Graphical Interface

Having the implementation of the back-end for the second version of Darius, which includes the

exploration of comment information for the enhancing of PC, through the search of Problem Domain

concepts on the source code, it was necessary to create a graphical interface to support it, so that

the users and programmers can increase the pace of its understandability tasks in a more effective

manner.

Continuing the thought stated on Section 6.2.4, that there was not going to be put to many

attention on extreme design details, but focusing only on the efficiency, the development of the

graphical interface for the second version of Darius continued the basis of the first version. However

in this second version, there was added an other tab onto the main tabbed pane, that corresponds

to the new component, the concept locator, as it can be seen on Figure 7.2.

If a program or software project is correctly loaded, as described on Section 6.2.4, the user can

now be able to start his concept location task. To do so, first he has to choose which IR model,

that Darius provides, he wants to use. In this case, as it was seen before, Darius provides two

84

7.1. Darius: Version Two

Figure 7.2: Concept Location Graphical Interface

different models: the VSM and the LSA. To do so, the user can click on the Load VSM button or

on the Load LSA button, corresponding to model he desires, as it can be seen on Figure 7.3.

Figure 7.3: Loading an IR model

In the example of the Figure 7.3, the user clicked on the Load VSM button, that corresponds

to the loading of the VSM. If everything runs correctly, in the end the model will be loaded, and

Darius warns that fact by writing the message VSModel loaded! on the down side of the centre

stage. Now the user can create a query and execute it in this model (Figure 7.4). To do so, on

the top right side of the centre stage, there is a text area where the user can collocate loose words

corresponding to the query he desires to be executed. Doing that, the user is now able to execute

that query, by clicking on the Query button, which is under the button correspondent to the model

he previously loaded.

After the query is executed, the result will be something like what is seen on Figure 7.5. The

results of the query will be presented in a form of a list on the table which is on the left down side of

the centre stage. This table will have two columns: the comment and the value for the similarity of

85

Comment Analysis for Program Comprehension

Figure 7.4: Writing a query to execute

that comment to the query executed. The results on the table will also be presented in a decreasing

order of similarity value. According to the desires of the user, he can navigate throughout this list.

select one of its element and see what is the type an nature of the comment he chose. To do so, he

must select one element and click on the => button. By doing so, the text area on the right down

size of the centre stage will be updated. In this text area it will appear the content of the comment,

the source code associated with it, the file corresponding to that comment and the position of that

comment on that file. With all of this information, the user can now be able to search for concepts

on code on a more efficient way.

Figure 7.5: Results from a query

7.2 Test

In this section it is described a test which was executed in order to see the utility and efficiency

of the second version of Darius. It is fully described, throughout this chapter, the functions that

this version provides to the users. In resume, using IR techniques, Darius provides means to the

users to search and locate Problem Domain concepts on the code, by using comment information

presented on the source code. If the user is able to find concepts on the program, he can establish

a bridge between the Problem and the Program Domain, which is a sign for a best and faster PC.

86

7.2. Test

The object of study chosen to be subject on this test, is iText. This program took part of the pre-

liminary study, described on Section 6.3, and passed it with success. According to the conclusions

of that preliminary study, iText contains a sufficient amount of comments, and the contents of that

comments have a sufficient dose of Problem and Program domain information, and so this program

can be explored for PC purposes using its comments. Throughout this section, it is explained the

goals and objectives of this test, as well as the results returned by Darius.

7.2.1 iText

As it was mentioned, the object of study for this test was iText2. iText is a Java library that allows to

manipulate and create PDF files. The selection of this software project, apart from having passed

the preliminary study, is due to the fact that the Problem Domain of this program is fully specified

and its fully known by the generality of the programmers, who are fully aware of the PDF world.

Throughout the observation of the website and manual of iText, it was possible to extract most

of the Problem Domain of this software project. The representation of the concepts from the Prob-

lem Domain and its relations can be seen on Figure 7.6. Like any other type of file, a PDF file has

metadata that provides information from the contents of the file. In this case, and taking in consid-

eration that is a PDF file, this metadata includes information regarding the author of the document,

the attributed title, the date of the creation of the file, the subject, and a set of keywords that were

given by the author to the document. A PDF document is a structure of objects than can be of dif-

ferent types: array, string, boolean, name, number and dictionary. All of these are low-level objects

are then organized, creating special hierarchical structures that form higher-level structures called

and defined by iText as elements, and that can be defined by the user. These include paragraphs,

chunks, sections, phrases, paragraphs, anchors, tables, images, an lists, which are sequences of

elements.

7.2.2 Concept Location

The Problem Domain of iText was defined, and the concepts around iText were established. With

this information, it was possible to use Darius to search for these concepts on the source code,

using the information presented on the comments. The strategy, to perform this test, passed by

2http://itextpdf.com/

87

Comment Analysis for Program Comprehension

Figure 7.6: iText Problem domain

the execution of queries, whose nature is thought to be related with the concept in search. If the

first returned result does not coincide with the expectations, it would be passed for the analysis of

the second result, and so forth, until is found one comment which provides effective information for

establish a bridge between that Problem Domain concept and the Program Domain. The number

of comments read for every query and its similarity to it was properly registered.

So, to initiate this test, it was necessary to load the source code of the program into Darius.

Then it has was chosen an IR model to start with. For the sake of this test, every query was

executed for the two different IR models, in order to see the differences between the results. These

differences on the results and their proper discussion can be seen on Subsection 7.2.3.

With the program and IR model loaded, it was possible to look and search for the concepts,

identified on Subsection 7.2.1. The first concept to search on the source code was the "PDF doc-

ument'' one, which identifies and represents the concept of a PDF file on iText. To do so it was

executed the query "PDF document''. From the results returned by Darius, the comment which

best fits the executed query was the one that can be seen on Figure 7.7. As it is observed on the

comment, in iText a PDF document is represented by the class PdfDocument which is an instance

of the class Document. From the comment it can also be concluded that a normal document is

translated into a PDF document using an object of the class PdfWriter. So in order to see how to

create a PDF document using a PdfWriter object it was executed the query "PDF writer class''. The

best match to this query was the description of the PdfWriter class, which can be seen on Figure 7.8.

Through the information on the comment it was concluded that this class is responsible for writing

88

7.2. Test

a given document using the PDF language onto an output stream, which can be a file, or in this

case a PDF file. So, in resume, to build a PDF file, it is necessary to create an object of the class

Document, pass it onto an object of the class PdfWriter which will translate all of its elements onto

the PDF language and into a file, which is physically a PDF file.

Figure 7.7: PDF Document query

Figure 7.8: PDF Writer class query

Then it was time to found out how to add information and contents to the document. First it

was necessary to study the way metadata is added to the document, and how it is represented. To

do so, this started by the execution of the query "title document'', to figure out how the title is added

and represented within a document. The best match to this query was the comment represented

on Figure 7.9. This is a comment to a method that adds a title, represented by a string, to an object

of the Document class. Exploring this method within the file mentioned by Darius, the source code

presented by this method is one that can be seen on Figure 7.10. Through this source code it was

89

Comment Analysis for Program Comprehension

concluded that meta information like the title, is added to the object Document by adding to a certain

list an object of the class Meta, which constructor has the label of the type of metadata, in this case

Element.TITLE, and the content of the metadata. To explore this class Meta, it was executed the

query "meta''. On the list of results, one of the best matches was the comment of the header of

the class Meta, observable on Figure 7.11. From this comment, it can be seen that the Meta class

is a implementation of the class Element. It can also be seen that this class is also reserved for the

subject, keywords, author and creation date, which were identified as part of the meta information

concept of the iText Problem Domain. This last fact also concludes that it was not necessary to

explore these other metadata types for PC purposes, as they are added to the Document object

using the same paradigm, as observed on the source code of the Document class.

Figure 7.9: Document's title query

Figure 7.10: Add title to document method

Having figured out how to introduce meta information on a PDF file, is was time to explore

the way iText manages the introduction of contents on the document. The concept of PDF content

has been identified on Subsection 7.2.1 as a series of elements or high-level structures. The first

element of content to identify was the anchor concept. To search for this concept on the code it

was executed the query "anchor element''. The document or comment which best matched this

90

7.2. Test

Figure 7.11: Meta query

query was the one represented on Figure 7.12, which is the description for the class Anchor. In

the comment it is described the way the user can build an anchor. It is also pointed out, and

sustained by the source code attached, that the class Anchor is an extension of the class Phrase,

which is also a concept of the Problem Domain of iText. To examine the nature of this concept on

the source code it was executed the query "phrase element''. The best found match can be seen

on Figure 7.13. This comment is the description for the header of the class Phrase, and provides

several examples of how to build objects of this class. On the first sentence of the comment, it

is also pointed out that a phrase is a series of chunks, which is also a concept from the Problem

Domain. From the header of the class, it can be seen that the class Phrase is an extension of a

list of objects from the class Element. So, crossing these two last facts, it can be predicted that a

chunk is represented on the source code using a class, which is an extension or implementation

of the Element class. To confirm this suspicion it was executed the query "chunk element''. The

best result can be seen on Figure 7.14. This comment confirms the previous suspicion. This is the

comment of the header of the Chunk class, which indicates that this class really implements the

Element class. This comments also informs that a chunk is the smallest type of element that can

be added to a given document.

Apart from these elements of content, there are others which were identified in the Problem

Domain. One of them is the concept of paragraph. Once again to explore the implementation

of this concept on the source code, it was executed a query to return comments which are more

related. The executed query was the following: "paragraph element''. The comment with the best

match to the query can be seen on Figure 7.15. In the comment and the attached source code it

91

Comment Analysis for Program Comprehension

Figure 7.12: Anchor query

Figure 7.13: Phrase query

Figure 7.14: Chunk query

92

7.2. Test

can be seen that a paragraph is represented by a class called Paragraph. The comment also points

out that a phrase is a series of chunks. This is sustained by the attached source code, where it can

be seen that the class Paragraph is an extension of the Phrase, which is also an extension for a List

of objects of the class Element, whose example of instance is the Chunk class.

Figure 7.15: Paragraph query

One of the other concepts of the Problem Domain to look for on the source code is the concept

of section. Using the same paradigm of the the previous queries, the query used to search for this

concept was the following: "section element''. The comment which seemed the best fit for this

query can be seen on Figure 7.16. As it can be seen on the comment, this element is represented

by the class Section. Through the comment and the header of the class, it can be seen that this

class is a list of several other elements, which are other sections, paragraphs, lists or/and tables.

Figure 7.16: Section query

Having figured out how the concept of section is materialized on the source code, it was time to

93

Comment Analysis for Program Comprehension

see how a similar concept is put on the source code: the chapter. The query executed was formed

on the following way: "chapter element''. The best match to this query was the comment to the

header of the class Chapter, which represents the chapter concept on the source code of iText.

This comment can be seen on Figure 7.17. Though the information on the comment it could be

concluded that a chapter is a special variety of a section. In the header of the class, this fact is

sustained, because the class Chapter is indeed an extension of the Section class.

Figure 7.17: Chapter query

With this, only left the search for two concepts. One is the concept of image, that can be

included into a PDF document. The query for the location of this concept was the following "image

element''. The best result was the comment represented on Figure 7.18. An image is represented

on the source code as a class called Image that is an extension of the class Rectangle, which is

itself a implementation of the Element class.

Figure 7.18: Image query

The last concept of the Problem Domain to look for was the concept of list. To do so, the same

94

7.2. Test

pattern of query was used: "list element''. The best match for this query was the comment of the

header of the class List, which represents the list concept on the source code, and can can be seen

on Figure 7.19. In this comment, it can be seen that an object of this class contains a list of objects

of the class ListItem. To explore this class it was executed the query "list item element''. The best

match to this query is represented on Figure 7.20. As it can be seen in the comment, the class

ListItem is an extension of the class Paragraph, which as discussed before.

Figure 7.19: List query

Figure 7.20: List Item query

Having finished all the search for the Problem Domain concepts on the source code with suc-

cess, it was possible to aggregate all of the information that was able to be extracted by Darius.

On Figure 7.21 it can be seen all of the information extracted, organized in a Class diagram, us-

ing Unified Modeling Language (UML). All of the classes and interfaces identified on the diagram,

represent concepts of the Problem Domain, which were bridged into the Program Domain. These

95

Comment Analysis for Program Comprehension

bridges are represented by the multiple connections and stereotypes, that can be visualized on the

diagram.

Figure 7.21: UML Class Diagram of the results

7.2.3 Discussion of the results

On the last subsection it was executed a test or case study of a program called iText using Darius.

The test started with the identification of the concepts of the Problem Domain of the program, which

can be seen on Figure 7.6. Step by step, and using the concept locator of Darius, it was able to

figure out the implementation of every concept on the source code and the relationships among

them, using the information presented on comments. In the end, it was able to aggregate all of

the collected information, and create a UML class diagram, which can be seen on Figure 7.21, that

gives a good overview of the bridges between the Problem and the Program Domain, or in other

words, the implementation of a certain Problem Domain concept on the source code.

The conclusion that can be extracted from this test, is that Darius provides a good user experi-

ence and more efficiency to the process of comprehending a given program. Using only simple but

96

7.2. Test

VSM LSA
Query Sim. Order Sim. Order

"PDF document'' 0.351 22 0.04 83
"PDF writer class'' 0.321 35 0.06 70
"title document'' 0.489 7 0.011 17

"meta'' 0.373 9 0.001 30
"anchor element'' 0.478 2 0.003 123
"phrase element'' 0.428 20 0.009 24
"chunk element'' 0.329 39 0.004 164

"paragraph element'' 0.323 23 0.006 57
"section element'' 0.302 40 0.006 61
"chapter element'' 0.281 58 0.002 153
"image element'' 0.38 24 0.006 25
"list element'' 0.292 89 0.005 94

"list item element'' 0.426 15 0.008 32

Average 0.367 29 0,012 72

Table 7.1: Results from the Queries

effective queries, the process of locating concepts using comment information was faster that the

complex task of reading the whole source code of the program. To sustain this fact are presented

on Table 7.1 the similarity and order of the best match comment to each of the executed queries,

on the two types of IR models that Darius provides.

As it can be seen on Table 7.1, using the VSM model, there was an average of 29 comments

that had to be read in order to locate the perfect location of a given Problem Domain concept.

Considering that iText has a total of 13343 comments, this means that in average only 0.21% of the

comments had to read. However, the results declined in quality passing for the LSA model, where

there was an average of 72 read comments, in order to find the best match. Although LSA scored

worse results, the percentage of the average read comments is still minimal, obtaining just 0.54%

of all the comments presented on the source code of iText.

Analysing the results of the similarities on Table 7.1, it can also be concluded that the values of

the percentage of comments read could be different if the queries were perfected and upgraded.

In the VSM model, the executed queries scored only an average of 36.7%, almost one third of the

full potential. Strangely, the results of similarity for the LSA model, scored a minimal value of 1.2%.

The vast difference to the result of the VSM model, gives an opportunity for further investigation,

for the search of answers for this question.

Combining the results from the similarity and order of best match for the two types of IRmodels,

97

Comment Analysis for Program Comprehension

there is no doubt, that in this test, the VSM model was more effective and retrieved faster results

than the LSA model. Given the true potential of the LSA model, further investigations must be

made, using different types of queries, or testing different numbers of dimensions for the concept

space, in order to see whether this model can present better results.

In resume, the results from Table 7.1, sustained and reinforced the true potential of Darius, as

a concept locator using comment information, and as a PC tool. Considering the tasks at hand,

this tool provided minimal effort to the user on the development of concept location processes,

reducing the work to do to just 0.21% of the total of comment information, needed for the process

of comprehending the program.

7.3 Summary

Having proved as feasible to develop, the second version of Darius introduced IR techniques that

addressed the concept assignment problem.

The process used to developed this second version was very similar to other approaches that

addressed the same problem. It started with the representation of the logical view of the documents

or the document database. To do it, it was created a matrix that associated the weight of a certain

word in a document, which in this case, was a comment (granularity level).

Having defined the document database, it was introduced two models of IR, in order to see

what type would deliver the best results. In particular it was implemented the VSM and the LSA.

There was also implemented methods of calculating similarity between queries and comments, in

order to establish the ranks of comments. It was also created a graphical interface that included an

area where the user can introduce the desired query, and see the comments more related to that

query, according to the IR model loaded.

In order to test Darius as a PC tool, it was used a program called iText, which is a Java library

that manipulates and creates PDF documents. Having previously defined the Problem Domain

of the program, and the singular concepts behind it, the idea was, through appropriate queries,

search for the materialization of these concepts on the source code, using the information included

on comments. In the end, there could be established all of the bridges between the Problem and

the Program Domain.

The result have shown that the test was a success. All of the Problem Domain concepts, pre-

98

7.3. Summary

viously defined, were able to be found on the source code, and with the information extracted it

was able to create a diagram that clearly shows the relation between the Problem and the Program

Domain of iText. On terms of results from the similarities and from the order of the best matches,

the VSM scored better results. In particular, with this model, in average, only 0.21% of the com-

ments had to be read in order to find the appropriate information about a certain problem domain

concept. The results have proven that Darius was able to catalyze the process of comprehending

the program, and also showed that the information extracted from the comments, have provided

strong means of obtaining that comprehension.

99

Part V

Conclusion

100

Chapter 8

Conclusion

This document is a dissertation, from a master degree in Informatic Engineering, included in the

areas of Program Comprehension and Comment Analysis. Throughout the first, second and third

parts of this dissertation it was given a detailed but concise description of the state-of-the-art of

these two areas. The fourth part had the objective of providing the answers for the questions raised

and the results for the goals aimed by this work.

In this chapter, there are given some final thoughts and conclusions about the work done in

this project, the discussion of the results, and also are given topics of interest of further future

investigations. Below, there is described and summarized each of the sections presented in this

document.

Chapter II - Program Comprehension In this chapter it is described an exhaustive study from

the PC area. Every main topic of this area was addressed, starting with the definition of mental

model, and the enumeration and full description of its static and dynamic elements, and also the

cognitive enablers. It was also given an overview of knowledge domain, focusing on the Problem

and on the Program Domain topics. In this chapter it was also given much attention to the the area

of Cognitive models, describing in detail the more important ones and that are more referenced

on the literature. The chapter ends with an enumeration of a list of PC tools, that use program

comprehension concepts to aid programmers understand programs.

Chapter III - Information Retrieval for ProgramComprehension In this chapter it is made

a bridge between the areas of PC and IR. The chapter starts with an overview of the IR area,

101

Comment Analysis for Program Comprehension

discussing the main process behind it and including a detailed description of the main models

used on IR. The chapter ends with an exhaustive study about the introduction of IR techniques on

PC approaches and tools, that are available on the literature.

Chapter IV - Source Code Comments Throughout this chapter it is given the look of the

source code comment on the literature. This exhaustive study includes the enumeration of the

different kinds of comments, the discussion of the different types of comment content, and it is also

given an overview of the literature of the relation between the source code comment and the natural

language, the program size, and its density and practice on the Informatics field.

Chapter V - Comment Analysis for ProgramComprehension In this chapter it is presented

an overview of the analysis of comments on the PC area. This chapter starts with an exhaustive

study, extracted from the literature, of the role of comments on the process of comprehension of

a given program. The chapter ends with an enumeration of the available approaches that use

comment analysis to enhance PC.

Chapter VI - Darius: The first stage In this chapter it is introducedDarius, the tool developed

in this master degree project. In particular, this chapter gives a full description of a preliminary study

that tried to prove the feasibility of developing that tool. There are included the goals of this study

and the strategies to execute in order to achieve them. It includes the description of Darius first

version that executed those tests, detailing each one of its components and the graphical interface.

The description of the steps and results of this preliminary study conclude this chapter.

Chapter VII - Darius: The second stage In this chapter it is included the exhaustive descrip-

tion of the second version Darius, as a concept locator. Each one of the components and the

graphical interface are fully detailed within this chapter. To prove the efficiency of this tool, it was

executed a test or case study that is described in the end of this chapter. This description includes

all the steps given and the discussion of the obtained results.

102

8.1. Discussion and Conclusions

8.1 Discussion and Conclusions

The main goal of the work developed and described in this master dissertation was to check if the

information regarding the Problem and the Program Domain included on source code comments,

could catalyzed the process of understanding a given program. To do so, it was developed a tool

called Darius that used IR techniques and applied them to the contents of source code comments,

in order to provide means for a faster and more effective comprehension of programs.

From the results obtained through a test using Darius, at a first glance, the idea is that the

tool provided effective means to obtain a faster and more effective comprehension of a program,

comparing it to the simple act of reading the whole source code of the program. Considering that

the program at test included a total of 13343 comments in a total of 480 files of source code, the

results from Darius, concluded that, in the minimum, there was only an average of 0.21% of those

comments that had to be read in order to obtain the comprehension of a single Problem Domain

concept. In addition, the results obtained of the similarity of the executed queries, which where

rather low, lead to say that this percentage of comments read, could be even lower, if the queries

were perfected. So, the full potential of this tool as a PC catalyzer was not put totally to the test,

which could be done in a future work. However, this tool included the loading of a LSAmodel, which

is referenced in the literature as the most effective of the IR models, that returns the best results.

Although the results obtained in this model are not to be discarded, there is a slight disappointment

on the LSA performance, which leads to further opportunities of investigations, with the goal of

checking the reasons of such results.

In resume, the results obtained from the test applied to Darius, give reasons for affirming

positively to Question 4 from Section 1.2 that asked if the information regarding the problem and

program domain contained on comments, properly retrieved and analyzed by a Comment Analysis

PC tool, can be used to enhance the program comprehension by establishing a bridge between

the two domains. The reality from the results from the test applied to Darius, is that from simple

queries it was possible to find comments which best fitted that query, and from that comments it was

possible to extract information that provided means of establishing bridges between the Problem

and Program domain, or in other words, the materialization of a certain Problem Domain concept

on the source code of the program.

Although this test or case study that was applied on Darius provided means of proving its

103

Comment Analysis for Program Comprehension

effectiveness as a PC tool, the reality and common sense demands that it must not be generalized

the idea that Darius works for every case, and the intention of this dissertation is to keep that

clear. In particular, Darius needs harder and more complex tests with other types of programs and

software projects, in order to see its full potential, and to check eventual flaws, that could be solved.

Looking at Darius as a PC tool, it is also necessary to put it at test using human subjects, in order

to check if, in general, the users and programmers would benefit in using this tool for program

understandability purposes. Only with the results provided by this final test, it could assumed and

sustained completely the idea that Darius is able to provide effective means of obtaining PC.

The steps taken to obtain comprehension of the program at test, included several strategies

that tend to followed a top-down model of comprehension, particularly the Brooks model. However,

this does not indicate that Darius is only targeted for those types of approaches, in relegation for

others. Again, it is reinforced the idea that Darius was not fully put to the test, included the use of

other approaches and strategies of comprehension, to fulfill the goals.

Before the development of the second version of Darius, which included this PC module, it

was developed a first version that included means of proving the feasibility of the development of

that second version. With that first version it was performed a preliminary study that explored the

quantity and contents of the comments on a set of programs and software projects. The results

proved that there was at least one program that responded to the requirements, and so it was able

to be explored for comprehensibility purposes, and the second version of Darius was proved as

feasible to develop. It is important to point out that the values that were used as references to the

two different tests, are not standards or fixed values accepted in the literature. These values are

just virtual points of reference that were extracted from works in the same field, that are available

on the literature, and that were properly referenced in this dissertation. The idea of this preliminary

study, was, as its name says, to preliminary study the nature of the raw material deal with, which

were source code comments. So, the decision was that it would be extremely abrupt to proceed

right way for the development of a PC tool, without executing this preliminary study. In addition, the

incorporation of the statistical functions about the comment part of the source code, strengthened

the power of this tool as a Comment Analysis one. Apart from just being a PC tool, with these

powers, Darius can also be used for simple analysis of the comments on the source code of

a program, which can be useful, for example, to check software quality, if the commenting is a

requirement of it.

104

8.3. Future work

Concluding this master disseration, the idea that stands is that the information from comments

can be explored, and with that, the programmer can use it for program comprehension purposes, by

establishing bridges between the Problem and the Program Domain. The objective of this work was

to explore this power, and reinforce it, by creating a tool that catalyzes this process. Darius proved

to be an effective tool, and with that effectiveness, all the goals aimed by this work were fulfill with

success.

8.2 Relevant work

At the same time the work decribed in this dissertation was developed, there was also executed

other activities that are related and relevant to this work. In particular, this included the publication

of an article on a conference that can be seen in [37].

8.3 Future work

In the end of Section 8.1 it is stated that all the objectives and goals, previously defined in the

beginning of this work, were fulfilled. However, throughout the study and development there was

some points of potential improvement or further investigations, properly referenced. Below there is

a list of potential topics of further investigation and improvement, and for future works:

• Investigation and improvement of the LSA model developed on Darius. The results from

the test conducted with the LSA model have disappointed, taking in consideration that this

IR model is referenced as one of the most effectives. In particular, there has to be tested

with different numbers of dimensions for the concept space, in order to check what value is

the optimal;

• Development and incorporation of other types of IR models, in order to check the effective-

ness of more complex models;

• Execution of tests with different and upgraded queries. The executed test included queries

which in average scored an average of 36.7% on terms of similarity to the best match. The

improvement of these queries could return better results for similarities, reducing the number

of comments to be read, improving the pace of the comprehension process.

105

Comment Analysis for Program Comprehension

• Execution of a study with human subjects of the Darius tool, in order to see the help that

this tool would provide for real programmers, on their tasks of comprehending real programs.

The reaction to this tool, would show the true potential of Darius.

• Improvement of the graphical interface to provide better user experience to programmers,

and improvement of the back-end modules, reducing the time of computation and the use

of resources, such as memory.

106

Bibliography

[1] Inference-based and expectation-based processing in program comprehension. In Proceed-

ings of the 9th International Workshop on Program Comprehension, pages 71--, Washington,

DC, USA, 2001. IEEE Computer Society.

[2] Program comprehension by visualization in contexts. In Proceedings of the International

Conference on Software Maintenance (ICSM'02), pages 332--, Washington, DC, USA, 2002.

IEEE Computer Society.

[3] Hervé Abdi. Singular Value Decomposition (SVD) and Generalized Singular Value Decompo-

sition (GSVD). Sage, 2007.

[4] Hirohisa Aman and Hirokazu Okazaki. Impact of comment statement on code stability in

open source development. In Proceeding of the 2008 conference on Knowledge-Based Soft-

ware Engineering: Proceedings of the Eighth Joint Conference on Knowledge-Based Software

Engineering, pages 415--419, 2008.

[5] G. Antoniol, R. Fiutem, G. Lutteri, P. Tonella, S. Zanfei, and E. Merlo. Program understanding

and maintenance with the canto environment. In Software Maintenance, 1997. Proceedings.,

International Conference on, pages 72--81, oct 1997.

[6] G. Antoniol, G. Canfora, A. de Lucia, and G. Casazza. Information retrieval models for recov-

ering traceability links between code and documentation. In Proceedings of the International

Conference on Software Maintenance (ICSM'00), 2000.

[7] Oliver Arafat and Dirk Riehle. The commenting practice of open source. In Proceeding of

the 24th ACM SIGPLAN conference companion on Object oriented programming systems

languages and applications, OOPSLA '09, pages 857--864, 2009.

107

Comment Analysis for Program Comprehension

[8] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[9] Victor R. Basili. Viewing maintenance as reuse-oriented software development. IEEE Softw.,

7:19--25, January 1990.

[10] Nicolas J. Belkin. Helping people find what they don't know. Commun. ACM, 43, August

2000.

[11] Mario Berón. Program inspection to interconnect the behavioral and operational views for

program comprehension. Technical report, National University of San Luis & University of

Minho, 2009.

[12] Mario Berón, Pedro R. Henriques, Maria J. V. Pereira, Roberto Uzal, and G. Montejano. A

Language Processing Tool for Program Comprehension. In CACIC'06 - XII Argentine Congress

on Computer Science, Universidad Nacional de San Luis, Argentina, 2006.

[13] Michael W. Berry, Susan T. Dumais, and Gavin W. O'Brien. Using Linear Algebra for Intelligent

Information Retrieval. Technical report, 1994.

[14] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas Webster. The concept assignment prob-

lem in program understanding. In Proceedings of the 15th international conference on Soft-

ware Engineering, ICSE '93, 1993.

[15] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J. Mach.

Learn. Res., 3:993--1022, March 2003.

[16] George E. P. Box and George C. Tiao. Bayesian Inference in Statistical Analysis (Wiley Classics

Library). Wiley-Interscience, April 1992.

[17] Ruven Brooks. Using a behavioral theory of program comprehension in software engineering.

In Proceedings of the 3rd international conference on Software engineering, 1978.

[18] Ruven Brooks. Towards a theory of the comprehension of computer programs. International

Journal of Man-Machine Studies, 18(6):543--554, 1983.

108

BIBLIOGRAPHY

[19] Jonathan Buckner, Joseph Buchta, Maksym Petrenko, and Václav Rajlich. Jripples: A tool

for program comprehension during incremental change. In in Proceedings of 13th IEEE

International Workshop on Program Comprehension (IWPC'05, pages 149--152, 2005.

[20] I. Burnstein, N. Jani, S. Mannina, J. Tamsevicius, M. Goldshteyn, and L. Lendi. The de-

velopment of a knowledge-based software fault localization system. In Systems, Man and

Cybernetics, 1992., IEEE International Conference on, pages 317--322 vol.1, oct 1992.

[21] G. Canfora, L. Mancini, and M. Tortorella. A workbench for program comprehension during

software maintenance. In Program Comprehension, 1996, Proceedings., Fourth Workshop

on, pages 30--39, mar 1996.

[22] B. Chandrasekaran, John R. Josephson, and V. Richard Benjamins. What are ontologies,

and why do we need them? IEEE Intelligent Systems, 14, January 1999.

[23] Ned Chapin, Joanne E. Hale, Khaled M. Khan, Juan F. Ramil, and Wui-Gee Tan. Types of soft-

ware evolution and software maintenance. Journal of Software Maintenance and Evolution:

Research and Practice, 13(1):3--30, January 2001.

[24] Elliot J. Chikofsky and James H. Cross. Reverse Engineering and Design Recovery: A Taxon-

omy. IEEE Software, 7(1):13--17, January 1990.

[25] D. Coleman, D. Ash, B. Lowther, and P. Oman. Using metrics to evaluate software system

maintainability. Computer, 27(8):44--49, August 1994.

[26] T. A. Corbi. Program understanding: challenge for the 1990's. IBM Syst. J., 28:294--306,

June 1989.

[27] Andrew M. Dearden and Derek G. Bridge. Choosing a reasoning style for knowledge based

system: lessons from supporting a help desk. Knowledge Engineering Review, 8, 1993.

[28] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and Richard

Harshman. Indexing by latent semantic analysis. JOURNAL OF THE AMERICAN SOCIETY

FOR INFORMATION SCIENCE, 41(6):391--407, 1990.

109

Comment Analysis for Program Comprehension

[29] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete Data via

the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):

1--38, 1977.

[30] Susan T. Dumais. Latent semantic analysis. Annual Review of Information Science and

Technology, 38(1):188--230, 2004.

[31] Katrin Erk and Sebastian Padó. A structured vector space model for word meaning in context.

In Proceedings of the Conference on Empirical Methods in Natural Language Processing,

EMNLP '08, pages 897--906, Stroudsburg, PA, USA, 2008. Association for Computational

Linguistics.

[32] L. Erlikh. Leveraging legacy system dollars for e-business. IT Professional, 2(3):17--23, 2000.

[33] Letha H. Etzkorn, Lisa L. Bowen, and Carl G. Davis. An approach to program understanding

by natural language understanding. Nat. Lang. Eng., 5:219--236, September 1999.

[34] Letha H. Etzkorn, Carl G. Davis, and Lisa L. Bowen. The language of comments in computer

software: A sublanguage of english. Journal of Pragmatics, 33(11):1731--1756, 2001.

[35] R. K. Fjeldstad and W. T. Hamlen. Application Program Maintenance Study: Report to Our

Respondents. In Proceedings GUIDE 48, April 1983.

[36] Beat Fluri, Michael Würsch, and Harald Gall. Do code and comments co-evolve? on the

relation between source code and comment changes. In Proceedings of the 14th Working

Conference on Reverse Engineering, pages 70--79, 2007.

[37] José L. Freitas, Pedro R. Henriques, and Daniela da Cruz. The role of comments on pro-

gram comprehension. In Luis Caires and Raul Barbosa, editors, INForum’11 — Simpósio de

Informática (CoRTA’11 track), September 2011.

[38] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language Specification, The

(3rd Edition) (Java (Addison-Wesley)). 2005.

[39] Sonia Haiduc and Andrian Marcus. On the use of domain terms in source code. In Pro-

ceedings of the 2008 The 16th IEEE International Conference on Program Comprehension,

pages 113--122, 2008.

110

BIBLIOGRAPHY

[40] Thomas Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22nd annual

international ACM SIGIR conference on Research and development in information retrieval,

SIGIR '99, pages 50--57, 1999.

[41] Zhen Ming Jiang and Ahmed E. Hassan. Examining the evolution of code comments in post-

gresql. In Proceedings of the 2006 international workshop on Mining software repositories,

MSR '06, pages 179--180, 2006.

[42] Dean Jones, Trevor Bench-capon, and Pepijn Visser. Methodologies for ontology development.

pages 62--75, 1998.

[43] Brian W. Kernighan and P. J. Plauger. The Elements of Programming Style. Computing

Mcgraw-Hill, January 1978.

[44] April Kontostathis and William M. Pottenger. A framework for understanding latent semantic

indexing (lsi) performance. Inf. Process. Manage., 42:56--73, January 2006.

[45] Rainer Koschke, Andrian Marcus, and Gerald Gannod. Guest editor’s introduction to the spe-

cial section on the 2009 international conference on program comprehension (icpc 2009).

Software Quality Journal, 19, 2011.

[46] Douglas Kramer. Api documentation from source code comments: a case study of javadoc.

In Proceedings of the 17th annual international conference on Computer documentation,

SIGDOC '99, 1999.

[47] Thomas K. Landauer. Latent Semantic Analysis. John Wiley & Sons, Ltd, 2006.

[48] Thomas K. Landauer, P. Foltz, and D. Laham. An introduction to latent semantic analysis.

Discourse Processes, 25(1):259--284, 1998.

[49] Michele Lanza, Stéphane Ducasse, Harald Gall, and Martin Pinzger. Codecrawler: an infor-

mation visualization tool for program comprehension. In Proceedings of the 27th international

conference on Software engineering, ICSE '05, pages 672--673, 2005.

[50] Dik L. Lee, Huei Chuang, and Kent Seamons. Document ranking and the vector-space model.

IEEE Softw., 14:67--75, March 1997. ISSN 0740-7459.

111

Comment Analysis for Program Comprehension

[51] M. M. Lehman and F. N. Parr. Program evolution and its impact on software engineering. In

Proceedings of the 2nd international conference on Software engineering, ICSE '76, pages

350--357, 1976.

[52] Stanley Letovsky. Cognitive processes in program comprehension. In Papers presented at the

first workshop on empirical studies of programmers on Empirical studies of programmers,

pages 58--79, Norwood, NJ, USA, 1986. Ablex Publishing Corp.

[53] P.K. Linos and V. Courtois. A tool for understanding object-oriented program dependencies.

In Program Comprehension, 1994. Proceedings., IEEE Third Workshop on, pages 20--27, nov

1994.

[54] David C. Littman, Jeannine Pinto, Stanley Letovsky, and Elliot Soloway. Mental models and

software maintenance. In Papers presented at the first workshop on empirical studies of

programmers on Empirical studies of programmers, pages 80--98, Norwood, NJ, USA, 1986.

Ablex Publishing Corp.

[55] W. Lowe and T. Panas. Rapid Construction of Software Comprehension Tools. In International

Journal of Software Engineering and Knowledge Engineering, 2005.

[56] Stacy K. Lukins, Nicholas A. Kraft, and Letha H. Etzkorn. Source code retrieval for bug local-

ization using latent dirichlet allocation. In Proceedings of the 2008 15th Working Conference

on Reverse Engineering, 2008.

[57] Rasmus E. Madsen, David Kauchak, and Charles Elkan. Modeling word burstiness using

the dirichlet distribution. In Proceedings of the 22nd international conference on Machine

learning, ICML '05, pages 545--552, New York, NY, USA, 2005. ACM.

[58] Jonathan I. Maletic and Andrian Marcus. Using latent semantic analysis to identify similar-

ities in source code to support program understanding. In Proceedings of the 12th IEEE

International Conference on Tools with Artificial Intelligence, 2000.

[59] Jonathan I. Maletic and Andrian Marcus. Supporting program comprehension using semantic

and structural information. In Proceedings of the 23rd International Conference on Software

Engineering, ICSE '01, pages 103--112, 2001.

112

BIBLIOGRAPHY

[60] Jonathan I. Maletic and Naveen Valluri. Automatic software clustering via latent semantic

analysis. In Proceedings of the 14th IEEE international conference on Automated software

engineering, 1999.

[61] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze. Introduction to Informa-

tion Retrieval. Cambridge University Press, New York, NY, USA, 2008.

[62] Andrian Marcus and Jonathan I. Maletic. Recovering documentation-to-source-code traceabil-

ity links using latent semantic indexing. In Proceedings of the 25th International Conference

on Software Engineering, 2003.

[63] Andrian Marcus, Andrey Sergeyev, Václav Rajlich, and Jonathan I. Maletic. An information

retrieval approach to concept location in source code. In Proceedings of the 11th Working

Conference on Reverse Engineering, 2004.

[64] Andrian Marcus, Václav Rajlich, Joseph Buchta, Maksym Petrenko, and Andrey Sergeyev.

Static techniques for concept location in object-oriented code. In Proceedings of the 13th

International Workshop on Program Comprehension, 2005.

[65] Jeff Michaud, Margaret-Anne D. Storey, and Hausi Müller. Integrating information sources

for visualizing java programs. In In Proc. of the International Conference on Software Main-

tenance (ICSM'01), page 250. IEEE, 2001.

[66] Bruce Momjian. PostgreSQL: introduction and concepts. 2001.

[67] T. K. Moon. The expectation-maximization algorithm. IEEE Signal Processing Magazine, 13

(6):47--60, November 1996.

[68] Hausi Müller and K. Klashinsky. Rigi-a system for programming-in-the-large. In Proceedings

of the 10th international conference on Software engineering, ICSE '88, pages 80--86, 1988.

[69] Natalya F. Noy and Deborah L. mcguinness. Online, 2001.

[70] E. Nurvitadhi, E. Nurvitadhi, and C. Cook. Do class comments aid java program understand-

ing? Frontiers in Education, Annual, 1:T3C13--17, 2003.

113

Comment Analysis for Program Comprehension

[71] Yoann Padioleau, Lin Tan, and Yuanyuan Zhou. Listening to programmers taxonomies and

characteristics of comments in operating system code. In Proceedings of the 31st Interna-

tional Conference on Software Engineering, ICSE '09, pages 331--341, 2009.

[72] Nancy Pennington. Empirical studies of programmers: second workshop. chapter Compre-

hension strategies in programming, pages 100--113. 1987.

[73] Nancy Pennington. Stimulus structures and mental representations in expert comprehension

of computer programs. Cognitive Psychology, 19:295--341, 1987.

[74] Maria J. V. Pereira, Marjan Mernik, Daniela da Cruz, and Pedro R. Henriques. Program

comprehension for domain-specific languages. Comput. Sci. Inf. Syst., 5(2):1--17, 2008.

[75] Ari Pirkola. The effects of query structure and dictionary setups in dictionary-based cross-

language information retrieval. In Proceedings of the 21st annual international ACM SIGIR

conference on Research and development in information retrieval, SIGIR '98, pages 55--63,

1998.

[76] Denys Poshyvanyk and Andrian Marcus. Combining formal concept analysis with information

retrieval for concept location in source code. In Proceedings of the 15th IEEE International

Conference on Program Comprehension, 2007.

[77] Ruben Prieto-Diaz and G. Arango. Domain Analysis and Software Systems Modeling. IEEE

Computer Society Press, Los Alamitos, CA, USA, 1991.

[78] Václav Rajlich and Norman Wilde. The role of concepts in program comprehension. In Pro-

ceedings of the 10th International Workshop on Program Comprehension, IWPC '02, pages

271--, 2002.

[79] Aoun Raza, Gunther Vogel, and Erhard Plödereder. Bauhaus -- a tool suite for program anal-

ysis and reverse engineering. In Lúis Pinho and Michael González Harbour, editors, Reliable

Software Technologies -- Ada-Europe 2006, volume 4006 of Lecture Notes in Computer Sci-

ence, pages 71--82. Springer Berlin / Heidelberg, 2006.

[80] Stephen Robertson. Understanding inverse document frequency: On theoretical arguments

for idf. Journal of Documentation, 60:2004, 2004.

114

BIBLIOGRAPHY

[81] Spencer Rugaber. Program Comprehension, May 1995.

[82] Spencer Rugaber. The use of domain knowledge in program understanding. Ann. Softw.

Eng., 9:143--192, January 2000.

[83] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing. Commun.

ACM, 18:613--620, November 1975.

[84] Carolyn B. Seaman. Software maintenance: Concepts and practice authored by penny grubb

and armstrong a. takang world scientific, new jersey. 2003; 349 pages isbn 981-238-426-x

(paperback) us$40. J. Softw. Maint. Evol., 20:463--466, November 2008.

[85] Teresa M. Shaft and Iris Vessey. The relevance of application domain knowledge: character-

izing the computer program comprehension process. J. Manage. Inf. Syst., 15:51--78, June

1998.

[86] Ben Shneiderman and Richard Mayer. Syntactic/semantic interactions in programmer be-

havior: A model and experimental results. International Journal of Parallel Programming, 8:

219--238, 1979.

[87] Elliot Soloway and Kate Ehrlich. Empirical studies of programming knowledge, pages 235--

267. ACM, New York, NY, USA, 1989.

[88] Elliot Soloway, Beth Adelson, and Kate Ehrlich. Knowledge and Processes in the Compre-

hension of Computer Programs. The Nature of Expertise, pages 129--152, 1988.

[89] Peter Sommerlad, Guido Zgraggen, Thomas Corbat, and Lukas Felber. Retaining comments

when refactoring code. In Companion to the 23rd ACM SIGPLAN conference on Object-

oriented programming systems languages and applications, OOPSLA Companion '08, pages

653--662, 2008.

[90] D. J. Spiegelhalter, A. Thomas, N. G. Best, W. R. Gilks, and D. Lunn. Bugs: Bayesian inference

using gibbs sampling. 2003.

[91] Ioannis Stamelos, Lefteris Angelis, Apostolos Oikonomou, and Georgios L. Bleris. Code

quality analysis in open source software development. Information Systems Journal, 12:

43--60, 2002.

115

Comment Analysis for Program Comprehension

[92] M.-A. D. Storey, F. D. Fracchia, and H. A. Müller. Cognitive design elements to support the

construction of a mental model during software exploration. J. Syst. Softw., 44:171--185,

January 1999.

[93] Margaret-Anne D. Storey. Theories, methods and tools in program comprehension: Past,

present and future. In Proceedings of the 13th International Workshop on Program Compre-

hension, pages 181--191, 2005.

[94] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. /*icomment: bugs or bad com-

ments?*/. SIGOPS Oper. Syst. Rev., 41, October 2007.

[95] Ted Tenny. Procedures and comments vs. the banker's algorithm. SIGCSE Bull., 17:44--53,

September 1985.

[96] Ted Tenny. Program readability: procedures versus comments. IEEE Transactions on Soft-

ware Engineering, 14(9):1271--1279, September 1988.

[97] Michael L. Van De Vanter. The documentary structure of source code, 2002.

[98] Bradley L. Vinz and Letha H. Etzkorn. Improving program comprehension by combining code

understanding with comment understanding. Know.-Based Syst., 21:813--825, December

2008.

[99] Anneliese von Mayrhauser and A. M. Vans. Comprehension processes during large scale

maintenance. In Proceedings of the 16th international conference on Software engineering,

ICSE '94, 1994.

[100] Anneliese von Mayrhauser and A. Marie Vans. Program Comprehension During Software

Maintenance and Evolution. 28(8):44--55, 1995.

[101] Andrew Walenstein. Cognitive support in software engineering tools: A distributed cognition

framework, 2002.

[102] Alf Inge Wang and Erik Arisholm. The effect of task order on the maintainability of object-

oriented software. Inf. Softw. Technol., 51:293--305, February 2009.

[103] Susan Wiedenbeck and Nancy J. Evans. Beacons in program comprehension. SIGCHI Bull.,

18:56--57, October 1986.

116

BIBLIOGRAPHY

[104] S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen. The effect of modularization and comments

on program comprehension. In Proceedings of the 5th international conference on Software

engineering, pages 215--223, 1981.

[105] Peter Young. Program Comprehension, May 1996.

117

