Motivation

• Suppose you have an information system with several heterogeneous data resources:
 – Relational databases, XML documents, etc…

• You want to achieve semantic interoperability between those data resources;

• You want to do it fast
Motivation

- The use of ontologies is a good approach to overcome the problem of semantic heterogeneity;
- This supports the usefulness of Topic Maps;
- However tools to build Topic Maps are crucial because the Topic Maps creation is an hard task.

Index

- Basic Concepts
- Our approach
- Inside Oveia
- Case Study
- Conclusion
Ontology

- Metaphysical branch of study which is concerned with existence and the nature of being;

- An ontology is just a set of words and relationships that formally describes an universe of discourse or context.
Ontology Specification

- Specifications Standards:
 - RDF(S): Resource Description Format
 - DAML/OIL: Darpa Agent Markup Language
 - OWL: Ontology Web Language
 - XTM: XML Topic Maps (our choice)

Topic Maps

- “Topic maps are a new ISO standard for describing knowledge structures and associating them with information resources”
 The TAO of Topic Maps, Steve Pepper, 05-2000

- Topics
- Associations
- Occurrences
- However too much work to create a real Topic Map.
Ontology Support

• 94 tools and similar environments to support creation, use, and maintenance
 - *Ontology Tools Survey, Revisited*
 • However no one for the automatic creation of Topic Maps.

Index

• Basic Concepts
• Our approach
• Inside Oveia
• Case Study
• Conclusion
Metamorphosis

Index

- Basic Concepts
- Our approach
- Inside Oveia
- Case Study
- Conclusion
Oveia

• A Topic Maps extractor from heterogeneous information system composed of two engines:
 – Metadata Extractor: collects pieces of information and stores them in an intermediate representation;
 – Ontology Builder: uses a specification to transform the intermediate representation into an ontology according to Topic Maps standard.
Metadata Extractor

- **XSDS** (XML Specification of Data Sources)
- Supports different kinds of sources (relational databases, XML files, ...)
- Uses a **driver** for each data source
- Creates an intermediary representation (called **Dataset**)

Extractor Specification

```xml
<resources>
  <datasources>
    <datasource extratorDriver="br.uneb.dcet.tmbuilder.drivers.DataBase"
                name="xata2004">
      <parameter name="connectionURL">
        jdbc:mysql://localhost/XATA2004
      </parameter>
      <parameter name="password"/>
      <parameter name="user">root</parameter>
      <parameter name="jdbcDriver">org.gjt.mm.mysql.Driver</parameter>
    </datasource>
    ...<dataset name="Authors" database="xata2004">
      SELECT code, name, url FROM author-table
    </dataset>
    <dataset name="Papers" database="xata2004">
      SELECT code, title FROM paper-table
    </dataset>
  </datasources>
</resources>
```
Datasets

- An intermediary representation;
- Contains all data extracted from information resources;
- Is the input to the XS4TM processor;
- Data is stored in table format:
 - Line x column

Ontology Builder

- XS4TM (XML Specification for Topic Maps)
 - Ontology extraction specification

- XTM becomes a sub-set of XS4TM
- XS4TM has 2 parts:
 - Abstract Structure
 - Instances (catalog)
OntoBuilder Specification

```xml
<instances>
  <topic dataset="Categorias">
    <instanceOf>
      <topicRef xlink:href="#Categorias"/>
    </instanceOf>
    <baseName>
      <baseNameString>@Categorias.Descricao</baseNameString>
    </baseName>
  </topic>
  ...
</instances>
```

Reference to the extracted dataset

XSDS x XS4TM
Generated topic map

• After the XS4TM processing, **Oveia** generates a topic map stored in memory;

• **Oveia** has two possible output formats:
 – OntologyDB: a relational database designed according to *Topic Maps* standard.

Index

• Basic Concepts
• Our approach
• Inside Oveia
• Case Study
• Conclusion
Conclusion

• This presentation appears in the context of the integration of heterogeneous information systems using the ontology paradigm and suggests the use of Topic Maps to describe the ontologies.

• Oveia is an architecture for the automatic construction of Topic Maps with data extracted from information systems.
Future Work

• Front-end development:
 – XSDS: datasource spec.
 – XS4TM: ontology builder spec.

• Part of this work is being integrated in an
 european Eureka project: IKF-P E!2235
 “Information Knowledge Fusion”