Constraining Topic Maps
A TMCL declarative implementation

José Carlos Ramalho
Giovani Librelotto
Pedro Rangel Henriques

Computer Science and Technology Research Center
CCTC - Portugal

Agenda

• Questions, lots of...
• Metamorphosis overview (the umbrella)
• Talk about TM model
• XTche design implementation
• Examples and demos
• Conclusion
Motivation or ...!?

- Constrains... Why?
- Is a Schema a Constraint Language?
- Creating a new language ... Why?
 - We are always creating new DSL arguing that we will hide complexity
 - Aren’t we introducing complexity?
- If you found interesting answers to the questions above you can try answering the next one:
 - How should we implement this new language?

Questions for the moment...

- Why are Topic Maps so unsuccessful?
- Why an interesting model is not used more often?
- What are they used for?
- Is it the model? Is it hard to understand? Is it hard to process?
- Are Topic Maps still far from the user community? Is there a gap to be filled?
What are TM used for?

- Knowledge Management
- Semantic Web (foggy buzzword)
 - Semantic Network of Resources
 - Ontologies

What is an ontology? (IMHO)

Structure level

Catalog level
Getting started

• Why Topic Maps?
 – These conferences ...

• Creating a TM is not so easy!
 – Development of some editing tools and methodologies
 – Development of some browsers

Getting started (2)

• When trying to apply the concepts to some real cases...
 – Creating a TM can become an hard task
 – Development of extraction and conversion tools that create TM automatically
 – An empty model is not useful -> harvesting
Metamorphosis

Getting started (3)

- When the number of applications grows you start to worry about the model and storage...
 - We are finishing an Msc work about the model with interesting conclusions
 - We have a “reasonable” Relational Model for TM and a browser working over it
 - In the near future: we will work on the TMQL implementation over our model and on the browser interface
Returning to the beginning

• What is really a TM?
 – According to the XTM DTD
 • A list of ... Topics, associations, occurrences
 • Everything else is constructed by reference
 • It is easy to get lost in a TM!
 – That DTD is completely abstract
 • There is room for “Specific Semantic Networks Schemas”

Can we throw away the TM?

• Once instanciated what is the use of it?
 – Add
 – Edit
 – Merge
• If yes, we could derive the specific models, we could implement a tool to do that automatically
Why TMCL?

- In some cases we felt the need to restrict the model
- It looked promising and challenging (we had an undergoing phd)...
Constraints?

- Enforcing a structure over a set of objects referencing each other
- Generating reports about the concrete
 TM: creating a reporting service

XTM or ...?

- What should be the target of our work?
 - Some model implemented in some Database (TMDM based)?
 - Complex to manipulate: do any of these scale?
 - XTM files?
 - Do not scale
- For the moment: XTM files
About the model...

- Msc thesis: TM Repository Specification and Implementation
 - Starting goal: take XTM and try to simplify it; compare the result with TMDM; create a relational model; test it and reason about it.

- Eureka project: Information Knowledge Fusion
 - XTM, OWL, RDF, IKF-Imodel

The model: Starting point
The model: looking at the leaves

The model: normalized
Demo: TMDiscovery

Schema constraints:
- Topic of type T must have a specified number of explicit names/occurrences/subject-indicators (cardinality);
- Topic of type T must have a name/occurrence/subject-indicator that is instance of topic type T, in scope S;
- Topic of type T must have a name/occurrence/subject-indicator that is instance of topic type A;
- Topic of type T must have an occurrence that is instance of topic type T, in scope S;
- Topic of type T must have an occurrence that is of type O;
- Topic of type T can be used as an association role topic in association with association type A;
- Topic of type T can be used as an association player topic in association with association type A;
- A list of topics are instances of topic type T, in scope S;
- Association with association type A must be in scope S;
- Association with association type A must have roles R1 and R2;
- Association of type A must have at least one role R being played by a topic of type T;
- Association of type A must have at least one role R being played by a topic of type T1 and the other is of type T2;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
- Occurrence of type O can be used within scope S;
- Occurrence of type O must have locators that match a URI pattern P;
- Occurrence of type O can be a characteristic of topics of type T;
TMCL: Requirements from ISO JTC1 SC34

Schema constraints:
• Topic of type T must have a specified number of explicit names/occurrences/subject-indicators.
• Topic of type T must have as name/occurrence/subject-indicators a value matching a particular type.
• Topic of type T must (not) have a name/occurrence with scope S;
• Topic of type T must have a name/occurrence, that is instance of topic type T.
...

Contextual constraints:
• Topic T can (only/not) be used for typing other topics;
• Topic T can (only/not) be used for typing subject indicator;
• Topic T can (only/not) be used for typing basenames;
• Topic T can (only/not) be used for typing occurrences;
...

How to ...?

• Schematron/XCSL processing model has been used in similar contexts
• For prototyping this processing model we would only need open “standards”:
 – XML
 – XSLT
 – XML Schemas
XTche architecture

XTche Validation Process
XTche Specification Language

- XML Schema based
 - Constraint lang. = Schema lang.
 - We have some experience with XML Schemas
 - The tools we use have an interesting graphical support that we wanted to use
 - If we choose an existing language to host ours part of the work is already done

- **XTche Spec. = XML Schema + semantic stamps**

XTche skeleton

- Imports: `http://www.di.uminho.pt/~gepl/xtche/xtche-schema.xsd`
xtche-schema.xsd

• A set of flags / semantic stamps
• Each flag represents a semantic validation
• The user will associate flags to concrete topics and these will map to semantic constraints that will be verified
• Remaining: Did we cover the whole TMCL?

Flags / Semantic Stamps

• Schema constraints
 – <xs:attribute name="topicType"/>
 – “this element represents a Topic type”
• Contextual constraints
 – <xs:attribute name="associationTypeExclusive"/>
 – “this topic can only be used to qualify associations”
A small case study

• JCR’s genealogical tree
• Using TMDiscovery (a TM browser soon freely available)

Example: schema constraint

• Each topic of type “man” must have an occurrence of type “foto”
Generated processor

```
<xtche:template match="*" mode="T-occurrences-cardinal">
  <xtche:for-each
  select="xtm:topic[xtm:instanceOf/xtm:topicRef/@xlink:href='#man']">
    <xtche:if
    test="count(xtm:occurrence[xtm:instanceOf/xtm:topicRef/@xlink:href =
    '#foto']) = 0">
      <err-message>
        : 4.1.2 - U2 - (c1) : Topic #<xtche:value-of select="@id"/>
        must have an occurrence that needs to be an instance of #foto.
      </err-message>
    </xtche:if>
  </xtche:for-each>
</xtche:template>
```

Results: foto

```
<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<doc-status
xmlns="http://www.di.uminho.pt/~gepl/xtche/namespace">
  <err-message number="1">Constraint: 4.1.2 - U2 - (c1)
: Topic #leo must have an occurrence that needs to be an
instance of #foto.</err-message>
  <err-message number="1">Constraint: 4.1.2 - U2 - (c1)
: Topic #zeca must have an occurrence that needs to be
an instance of #foto.</err-message>
</doc-status>
```
Example: schema constraint

- Each topic of type “man” must have an occurrence of type “foto”
- Each topic of type “woman” must have an occurrence of type “biography”

Example: contextual constraint

- Semantic Stamp = xtche:associationType-Exclusive
- topic “descendant” can only be used to type associations
- demo: TMDiscovery
Results: descendant

```xml
<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<doc-status xmlns="http://www.di.uminho.pt/~gepl/xtche/namespace">
  <err-message number="1">Constraint: 4.1.1 - U1 - (a2) : Topic #descendant can be used for typing associations and nothing else. Error in Topic #zp.</err-message>
  <err-message number="3">Constraint: 4.1.1 - U1 - (a1) : Topic #marriage must be declared for typing associations.</err-message>
</doc-status>
```

There are bugs somewhere in the middle of 40 XSLT stylesheets!

Example: reporting services

- Semantic Stamp = xtche:associationType-Forbidden
- topic “descendant” cannot be used to type associations
- topic “marriage” cannot be used to type associations
- Expected result: number of descendant and marriage associations
Results from reporting

```xml
<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<doc-status xmlns="http://www.di.uminho.pt/~gepl/xtche/namespace">
  <err-message number="6">Constraint: 4.1.1 - U1 - (a3) : Topic #descendant can not be used for typing associations.</err-message>
  <err-message number="3">Constraint: 4.1.1 - U1 - (a3) : Topic #marriage can not be used for typing associations.</err-message>
</doc-status>
```

Aug 4, 2005 - EML - jcr

Related Work

- AsTMa! – Robert Barta
- Eric Freese’s proposal: DAML+OIL
- ...
Future Work

- Test, test, test ...
- Correct, correct, correct ...
- Optimize
- To implement this in the model behind TMDiscovery