
AOmpLib: An Aspect Library for Large-Scale Multi-Core Parallel
Programming

Bruno Medeiros
Departamento de Informática/CCTC

Universidade do Minho
Braga, Portugal

brunom@di.uminho.pt

João L. Sobral
Departamento de Informática/CCTC

Universidade do Minho
Braga, Portugal

jls@di.uminho.pt

Abstract— This paper introduces an aspect-oriented library
aimed to support efficient execution of Java applications on
multi-core systems. The library is coded in AspectJ and
provides a set of parallel programming abstractions that
mimics the OpenMP standard. The library supports the
migration of sequential Java codes to multi-core machines
with minor changes to the base code, intrinsically supports
the sequential semantics of OpenMP and provides improved
integration with object-oriented mechanisms. The aspect-
oriented nature of library enables the encapsulation of
parallelism-related code into well-defined modules. The
approach makes the parallelisation and the maintenance of
large-scale Java applications more manageable.
Furthermore, the library can be used with plain Java
annotations and can be easily extended with application-
specific mechanisms in order to tune application
performance. The library has a competitive performance, in
comparison with traditional parallel programming in Java,
and enhances programmability, since it allows an
independent development of parallelism-related code.

Keywords- Java; Aspect-oriented programming; parallel
programming, OpenMP

I. INTRODUCTION
The wide availability of multi-core systems reinforces

the need for parallel programming languages that improve
programmer productivity. It is expected that in the next
decades the number of cores on those systems will
continue to increase. Contrary to previous evolutions in
computer architectures, multi-core systems require new
software programming techniques to support the
management of parallelism-related code. This adds extra
complexity to the software development process since
programmers must be concerned with core (e.g., domain)
functionality implementation and with techniques to
effectively exploit parallelism across target platforms.

Introducing new parallel programming languages
makes the adaptation process more difficult since
programmers must rewrite the huge base of legacy code
(e.g., sequential code). Extending an existing language
with new parallel programming constructs (e.g., using a
sequential-like language as the base language) provides a
smooth transition to multi-core enabled applications and
promises to make the migration of the huge base of legacy
sequential code easier.

OpenMP is an example of such kind of approach. First,
parallelisation can be performed incrementally, by
progressively including pragma annotations into the base

code. This supports the parallelisation of legacy code with
minor changes to the code base. Second, the parallelism-
related code can be localised into well-defined statements
(the pragma annotations) making it easier to identify
them, improving understandability and maintainability.
Third, it is possible to develop programs with a sequential
semantics (i.e., programs can be valid if annotations for
parallelisation are ignored). These features can help
development, since most of the domain-specific code can
be developed and tested by running applications
sequentially, even in later development stages.

However, OpenMP has several limitations for large-
scale applications: i) pragmas can become spread across
many application modules and, thus, modular
programming is not feasible once the design decisions
concerning the parallelism exploitation strategy are not
encapsulated into well-defined modules; ii) more
sophisticated parallelisation strategies must resort to
explicit calls to OpenMP library routines and to additional
parallelism-specific code. For instance, programmers may
have to resort to threads id to provide application-specific
loop scheduling or to attach code for performance tuning.
This defeats the support for incremental development and
sequential semantics: programmers must invasively
include new code into base programs, code than can be
difficult to unplug to enforce sequential execution.

Another OpenMP hurdle is the lack of support for the
Java language: some early efforts (like JOMP [1]) are no
longer supported. Moreover, the OpenMP programming
approach is not suited for object-oriented applications
since it is not compatible with features of modern object
oriented languages that are extensively used in large-scale
Java applications, namely annotations, interfaces, abstract
classes and inheritance. The root of this problem is the
intrinsic conflict between inheritance and concurrency
constrains: parallelism directives may not be retained
across the inheritance chains. This conflict was identified
a long time ago and reported as the inheritance anomaly
[2]. Support for parallelism in object-oriented frameworks
built on top of Java becomes even more complex since the
methods implementing parallelism concerns can be
accidentally overridden in concrete framework instances.

The AOmpLib approach aims to promote a smooth
transition of Java programmers to multi-core
programming by providing a library of pluggable modules
that enable parallel execution. Java programmers can start
by writing domain specific code in plain Java (or reuse

existing sequential code) and later can compose the base
program with aspect modules from (or extended from) the
AOmpLib in order to enable parallel execution.

The AOmpLib is inspired in OpenMP but relies on
Aspect-Oriented Programming (AOP) techniques [3] to
overcome OpenMP limitations for large-scale Java
applications by providing:
• a library of aspects modules implementing most

common used OpenMP abstractions, which can be
composed with a base program either through plain
Java annotations or through AspectJ pointcuts;
sequential semantics and incremental development
are intrinsically supported since aspects can be
(un)plugged to/from a given base program at any
time;

• better compatibility with inheritance and with the
usage of Java interfaces by using AOP pointcuts to
bind aspect modules to interfaces;

• an easy way to attach new aspects into a given base
program, enabling the development of application
specific aspects in order to tune performance.
Moreover, the library can be easily extended/changed
to handle application specific mechanisms.

The main benefit of the AOmpLib approach is the
support for incremental and independent development of
large-scale, multi-core enabled Java applications.
Programmers start with platform-independent Java code
and later implement and compose aspect modules in order
to introduce parallelism in a non-intrusive manner. The
AOmpLib provides a library of aspect modules that
mimics OpenMP constructs and that can be reused/tuned
across applications and target platforms.

The next section provides a more detailed discussion of
the problems of traditional parallel programming for
large-scale object-oriented applications. Section III
describes the execution model, the supported
programming abstractions and presents a simple example
of the usage of the library. Section IV presents an
overview of the current library implementation and
Section V presents evaluation results. Section VI
compares the work with other research efforts and Section
VII concludes the paper.

II. LIMITATIONS OF TRADITIONAL APPROACHES
To illustrate the problem of traditional parallel

programming techniques this section uses the MolDyn
benchmark, an example taken from the Java Grande
Forum (JGF) [4]. The MolDyn benchmark provides a
computational kernel typical in molecular dynamics
simulation codes [5][6]. The JGF benchmark provides a
sequential and parallel version (based on Java threads,
a.k.a., JGF MT) of each benchmark.

Figure 1 shows a simplified class diagram. The class
MD contains all the information about the simulation. The
method runiters implements the iterations of the
simulation. The class Particle contains 9 variables
representing the position, velocity and force for all
coordinates in a three dimensional space. The method
force calculates the force of a specific particle with the
remaining particles.

-particle : Particle[]
+initialise()
+runiters()
+computeForces()

M D
-xcoord, ycoord, zcoord
-xvel, yvel, zvel
-xforce, yforce, zforce
+domove()
+force()

Particle

1

*

l i xo

1

*

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 1. Simplified MolDyn class diagram

Figure 2 shows a code snippet of the base program (i.e.,
sequential version). For a pre-defined number of steps
(movemx) it updates the particles position and computes
the new force on each particle based on these new
positions.

 class md {
 static particle one [] = …;
 int movemx = …;

 int mdsize = …;

 void runiters(){
 for (move=0; move<movemx; move++) {
 for (i=0; i<mdsize; i++) {
 one[i].domove(); /* move particles */
 }
 for (i=0; i<mdsize; i++) {
 one[i].force(i); /* compute forces */
 }
 … // other simulation steps
 }
 }
 }

 class particle {
 double xcoord, xvelocity, xforce;

 void domove() {
 xcoord = xcoord + xvelocity + xforce;
 … // other computations
 }
 void force(int x) {
 for (i=x+1; i<mdsize; i++) {
 forcex = …
 md.one[i].xforce = md.one[i].xforce - forcex;
 … // other computations
 }
 }
 }

Figure 2. JGF MolDyn sequential implementation

In order to enable parallel execution the JGF MT
benchmark (invasively) changes the base implementation
of both MD and Particle classes. Figure 3 shows a
simplified code that illustrates the JGF parallelisation. In
the approach taken all threads execute the runiters
method, which was moved to the run method of the
mdRunner class. Thread creation code is shown in red. In
this approach each thread will compute the forces acting
on a subset of particles. The code implementing this
decision is shown in blue (in this case a cyclic load-
distribution approach was taken). There is a data race in
the computation of the particles’ force fields due to third’s
Newton law use (i.e., forces are symmetric). To deal with
this data race, each thread uses a local force array,
requiring a change in the particle implementation (shown
in green).

 class md {
 static particle one [] = …;
 int movemx = …;

 int mdsize = …;
 int nthreads =…;

 void runiters(){

 /* spawn threads */
 for(int i=1;i< nthreads;i++) {
 thobjects[i] = new mdRunner(i);
 th[i] = new Thread(thobjects[i]);
 th[i].start();
 }
 ...
 for(int i=1;i< nthreads;i++) {
 th[i].join();
 }
}

 class mdRunner implements Runnable {
 int id;

 void run() {
 for (move=0;move<movemx;move++) {
 for (i=0;i<mdsize;i++) {
 one[i].domove(i); /* move particles */
 }
 /* cyclic distribution */
 for (i=id;i<mdsize;i+=nthreads) {
 one[i].force(i); /* compute forces */
 }
 }
 }

 class particle {
 double xcoord, xvelocity, xforce;
 double [] sh_forcex;
 double [][] sh_forcex2;

 void domove(int part_id) {
 xcoord = xcoord + xvelocity + sh_forcex[part_id];
 }
 void force(int x) {
 for (i=x+1;i<mdsize;i++) {
 //md.one[i].xforce = md.one[i].xforce - forcex;
 sh_forcex2[id][i] = sh_forcex2[id][i] - forcex;
 }
 }
 }

Figure 3. JGF MolDyn multi-thread implementation

This example illustrates the problems of introducing
parallelism into large-scale Java applications: parallelism
related code is scattered across many base classes (MD
and Particle in this case). This results in invasive changes
to the base program and the design decisions become
scattered across multiple code blocks (e.g., red, blue and
green code reflect three design decisions: task creation,
work distribution and dependence management). This
kind of approach is not usable in systems with a large
number of classes. Note that OpenMP could partially
solve the issue, but it would not avoid the code in green.

This kind of approach also pre-empts the usage of
object-oriented mechanisms. For instance, there are many
types of forces among particles, which can be managed by
extending the class particle overriding the method force.
In those cases the parallelism related code could be lost if

a new implementation is provided for that method.
A more complex problem is the usage of Java

interfaces. The particle class could be an interface with
many implementations (this is for instance the case of the
LAMMPS package that provides many different Particle
implementations where the user selects the
implementation that best suits his needs). In such cases
the code should be injected in all classes implementing the
interface. A more severe problem is that the user cannot
provide a specific implementation of the Particle class.

The AOmpLib solves all these issues by modularising
parallelism related code into aspect modules. Those
modules are attached to the base code using the AOP
pointcut mechanism, which also supports pointcuts
defined over Java interfaces and bindings that are retained
over the class hierarchy. The next section describes the
AOmpLib.

III. DESIGN AND IMPLEMENTATION OF AOMPLIB
This section describes a library of aspect modules that

currently supports the approach. The section starts by
presenting the execution model and how it is supported by
aspect oriented programming techniques [3]. Later it
describes the implemented parallelism constructs and how
those concerns are composed. The last subsection
provides a case study.

A. Execution Model
The AOmpLib execution model is inspired in OpenMP

and on Concurrent Object-Oriented Languages (COOL)
[2]. The main source of parallelism in AOmpLib are
parallel regions, as in OpenMP. The execution starts with
a single activity, designated master thread, that creates a
new team of threads when enters into a parallel region.
When the threads in a team encounter a work-sharing
construct the work is divided among them.
Synchronisation constructs enforce execution constrains
among the threads in the team. Data sharing constructs
specify how heap allocated objects are shared among
threads.

The OpenMP standard requires that every directive
should be applied to a single statement. In C/C++ this
often requires enclosing the desired code block into
brackets in order to group multiple statements into a
logical block.

In AOmpLib each mechanism acts upon a set of
method calls in the base program (i.e., a joinpoint in AOP
terminology). Thus, like in COOL languages all
parallelism related constructs are bound to class
interfaces, more specifically to method executions. A
parallel region is the context of a method execution. When
the master thread performs such method execution a new
team of threads is created, where each thread will execute
the method and implicitly synchronise when the method
execution ends. Additional synchronisation among the
threads in the team can occur on method executions
performed in the calling context of a parallel region. For
instance, methods declared as critical behave as
synchronized Java methods and enforce execution in
mutual exclusion.

In AOmpLib multiple statements are grouped by
moving those statements into an externally visible
method, making it possible to assign a unique name to a
code block in order to ”plug” the required aspects.
Grouping statements into methods is also more consistent
with the object-oriented philosophy: concurrency
constructs are applied at object boundary and thus, can be
retained when the method is overridden in subclasses
(e.g., the mechanism can be applied to a method with a
given name and signature). Many modern IDEs, such as
the Eclipse, provide support for this kind of refactoring. In
modern systems this refactoring does not impose any
performance penalty since methods call are often
automatically made inline by the compiler, avoiding the
overhead of an additional procedure call.

A consequence of the previous rule is the refactoring of
loops into methods, which are a very important source of
parallelism in scientific applications. To inject parallelism
in loop executions using independently developed
pluggable modules, external modules must be able to act
upon the loop iteration range. The AOmpLib follows a
strategy similar to TBB by exposing the loop iteration
space as method parameters. These methods are called for
methods and expose the loop iteration range in their first
three integer parameters (start value, end value and step).
These methods are part of the parallelisation API, since
when refactoring loops into methods they become part of
the class interface. Based on this approach, those methods
can be annotated with properties that enable the support of
an execution model similar to for work sharing constructs
in OpenMP. Exposing for loops as methods enables the
development of pluggable modules that can exploit
different loop scheduling approaches (e.g., static versus
dynamic). Furthermore, it is the key to enable efficient
load distribution policies by plugging aspect modules that
rewrite the iteration range according to the thread id that
executes the method.

Data sharing among activities is only possible through
heap allocated objects, since local variables and method
parameters are intrinsically local in Java. Heap allocated
objects are shared by default in parallel regions unless
they are declared thread local objects. In such cases
additional constructs provide control on how/when values
are copied to/from shared memory. The memory
consistency model layers on top of the Java weak
consistency model. An activity can locally cache shared
values until a synchronisation primitive is executed.

B. Aspect-Oriented Programming
The Java language is one of the most widely used

programming languages and it includes support for
concurrent programming through Java threads and other
concurrency abstractions. However, it is cumbersome to
develop parallel applications with Java threads as it
generates more verbose programs than an OpenMP-like
implementation would generate (as it was shown in
section 2). Several authors [1][7] proposed extensions to
Java to support OpenMP. Some approaches explore Java 5
annotations introducing an alternative to traditional
OpenMP directives. AspectJ [8], an aspect-oriented

extension to Java, provides an easy way to associate
semantic actions to those annotations. Moreover, aspect-
oriented techniques also offer the possibility to
encapsulate in the form of reusable modules many
concurrency patterns and mechanisms [9].

The current AOmpLib (v1.0) is built on top of the
AspectJ language and supports both annotation and
pointcut style of programming. Annotations provide the
easiest way to use the library (although, also more
limited). For instance, a parallel region can be expressed
by placing the @Parallel annotation in the corresponding
method definition. The pointcut style involves the creation
of an aspect module that extends the abstract aspect
ParallelRegion. For instance, the aspect in Figure 4
specifies that executions of someMethod() are parallel
regions (e.g., they will be executed by a team for threads).
 public aspect MyParallelRegion extends ParallelRegion
 {
 pointcut parallelMethod() : call (void someMethod());
 }

Figure 4. Concrete aspect for a parallel region

The pointcut style is more powerful than annotation
style since aspect specific methods can be overridden to
customise the abstract aspect for the specific situation. It
also enables the development of pluggable modules, since
aspects can be deployed at load time and, thus, they keep
the base program free from parallelism related statements.

The pointcut style natively supports OO mechanisms,
since a pointcut can act upon all implementations of a
method (including overriding methods) and also can act
upon Java interfaces (e.g., all methods implementing a
given interface).

This paper illustrates AOmpLib mechanisms with the
annotation style. Annotations avoid writing the above
aspect, since the library provides aspects implementations
for annotations. For instance, Figure 5 shows the aspect
that acts upon all methods that are annotated with
@Parallel. The annotation style, however, suffers from
limitations similar to OpenMP concerning modularity.
 aspect ParallelAnnotation extends ParallelRegion {
 pointcut parallelMethod() : call (@Parallel * *(*));
 }

Figure 5: Aspect parallel region capturing annotated methods

The AOmpLib uses AspectJ mechanisms to rewrite the
base program. The aspect compiler (called weaver)
rewrites the base program to include the code provided in
the aspect implementation. In this specific case, annotated
methods will be rewritten to include code to create a team
of threads and to synchronise that team at the end of the
method execution. Current AspectJ implementations
perform rewrites at compile-time (or at load time)
introducing very low run-time overhead on most cases.

Aspects are specified into separate modules (e.g., an
AspectJ module is specified in a way similar to a Java
class) and can be configured for each concrete usage. In
the annotation style such configuration is performed
though additional annotation parameters. In the pointcut
style, it is performed by overriding methods of the base
(abstract) aspect. For instance, a parallel region with 4

activities can be created with @Parallel(threads=4), or
by defining the method int numThreads() { return(4); } in
the concrete aspect of Figure 4.

C. Programming Abstractions
Table 1 summarises the currently supported set of

programming abstractions. Parallel regions are the main
source of parallelism (e.g., methods annotated with
@Parallel). All threads in the team execute the code
inside those parallel regions. For methods (e.g., methods
providing loop iteration space in their first three
parameters) can be annotated with the @For work-sharing
construct. The library provides three different loop-
scheduling alternatives: static by blocks, static cyclic and
dynamic. The @Ordered construct is only supported
within the calling context of a for method.

@Parallel[(threads=n)]
@For[(schedule=[staticBlock | staticCyclic | dynamic)]
@Task
@TaskWait
@FutureTask
@FutureResult
@Ordered
@Critical[(id=name)]
@BarrierBefore
@BarrierAfter
@Reader
@Writer
@Single
@Master
@ThreadLocalField[(id=name)]
@Reduce[(id=name)]

Table 1. Supported OpenMP abstractions

The @Task spawns a new parallel activity to execute
the annotated method. This construct can also be used
outside the parallel region. In both cases an additional
method can be defined to act as the join point between the
spawning and the spawned activity. @FutureTasks is
similar but targets methods with a return value. Those
methods must return an object with getter/setter methods
that act as synchronisation points (specified by
@FutureResult).

@Critical restricts the execution of a method to a single
activity at once. The library provides an implementation
of this mechanism to replace the Java built-in
synchronized mechanism. In Java each object holds its
own lock, which is used to ensure the exclusive access to
methods or regions declared as synchronized. The library
implementation enables the use of a specific lock that can
be shared among multiple type-unrelated objects (as in the
OpenMP). In order to identify a particular lock in the
application, the parameter id should be settled or,
otherwise, the lock of the object where the annotation is
defined is used (as in plain Java).

The lock id has particular importance to improve
composability of annotations. A common strategy to
reduce the amount of synchronisation is to use separate
locks within the same object. This allows more than one

thread to execute methods in the same object but these
methods are organised into disjoint sets, each set
controlled by a different lock. For this purpose, more than
one lock per object is required, which is possible through
the use of lock ids. The pointcut style does not have such
problem since each aspect instance can use a different
lock. To support a single lock across the entire parallel
region the library provides two different pointcuts:
criticalUsingCapturedLock and
criticalUsingSharedLock. The first uses a lock per target
object, the later uses a single lock per aspect.

A @Barrier establishes a synchronisation point where
threads synchronise. Each thread, reaching one of those
points blocks waiting for the remaining threads in the
same team to arrive. The library provides two different
annotations, inserting the barrier before or after the
method execution. The barrier has the scope of a teams of
threads, in a way similar to OpenMP (this contrasts with
@Critical whose scope is all threads in the system).

The readers / writer synchronisation mechanism
differentiates accesses for reading and writing purposes. It
allows multiple readers, but a single exclusive writer. This
implementation requires two hook points to specify
accesses for reading and writing. The annotation-based
implementation uses the @Reader and @Writer
annotations.

The @Single and @Master mechanisms conditionally
execute a method call, by a single or by the master thread
in the team. Both mechanisms can also be applied to
methods returning a value. In such case the result is
propagated to all threads in the team.

Variables on the stack are local to threads. However, it
is sometimes desirable that global variables – e.g. object
fields – are instantiated per thread and not per object. This
is generally made when objects are exposed to concurrent
activities to avoid unnecessary synchronisation, either due
to sharing of memory references between threads or
required to ensure data consistency. Thread local
mechanism enables the declaration of variables local to a
thread.

In the library current implementation each thread local
object field is initialised with the value of the field outside
the thread local context, if the first thread access is a read
operation. Otherwise, the thread local value is not
initialised, since the first thread access is for writing. The
interface of the implementation of thread local uses the
threadLocalFieldRead and threadLocalFieldWrite
pointcuts to specify the points where variables are read or
updated. In the annotation style a single annotation
(@ThreadLocalField) replaces both of these join points

In same cases it is necessary to reduce thread local
copies to a single value, in order to compute the object
global value (e.g., as if the thread local mechanism was
not applied). This is usually performed when the value is
requested outside the thread local context (e.g., by the
main thread) or when a thread that owns a copy
terminates. In the pointcut style the concrete aspect must
implement an abstract method that merges two thread
local objects into a single object and must also specify the
join point where the reduction is performed.

In the case of annotations, thread local objects must
implement the reducer interface, which provides a method
to merge two thread local objects into a single object. An
additional annotation (@Reduce) specifies the point
where values should be reduced. The optional id
parameter can be used to distinguish among several thread
local fields.

 In certain situations it is necessary to provide
parallelism specific code. In this approach specific aspect
modules can provide such code. One example is a
mechanism that conditionally executes a method call
according to some condition (e.g. method parameters). To
enable the development of such code the id of each
activity in the team can be gathered inside parallel regions
by extending an abstract aspect and calling the method
getThreadId().

D. Composition of Aspect Modules
The OpenMP standard supports several combined

constructs (e.g. a single directive for a parallel region and
for work-sharing). In the AOmpLib those combined
constructs can be implemented by creating a new abstract
aspect enclosing several aspects as inner aspects. For
instance, a parallel for can be implemented by creating an
abstract aspect encompassing both the parallel region and
for aspects as inner aspects.

The library also supports nested parallel regions. In
such cases, multiple aspects extending the base parallel
region aspect can be included in the build (or as a
alternative, multiple nested @Parallel annotations can be
provided).

E. Linpack Case Study
This section illustrates the use of the library by showing

details of the parallelisation of the JGF LUFact. This case
study is based on the Java version of the highly popular
Linpack benchmark [10]. Figure 6 presents a sketch of the
code after refactoring (the dgefa function), which
involved the creation of two new methods that comprise
well defined phases of the algorithm: i) the creation of a
new method (interchange) and ii) a new for method
(reduceAllCols). The more computational demanding part
of this algorithm is the row elimination. For each column
k of the matrix it performs a column-by-column
multiplication (i.e., vector multiplication) of the pivot
col_k with every other column, starting at column k+1.

int dgefa(double a[][], int lda, int n, int ipvt[]) {
 // gaussian elimination with partial pivoting
 ...
 // for each column
 for(k=0; k<nm1; k++) {
 ...

 // find l = pivot index
 l = idamax(n-k,col_k,k,1) + k;
 ipvt[k] = l;

 if (col_k[l] != 0) {

 // interchange if necessary
 interchange(col_k, k, l);

 // compute multipliers
 t = -1.0/col_k[k];
 dscal(n-(kp1),t,col_k,kp1,1);

 // row elimination with column indexing
 reduceAllCols(kp1,n,1 /* other parameters omitted */);
 }
 }
 ...
}

// reduce all columns from startc to endc
void reduceAllCols(int startc, int endc, int is /* ... */}) {

 ...
 for (int j = startc; j < endc; j+=is) {

 ... // reduceColumn(a, n, col_k, j, k, kp1, l);
 daxpy(n-(kp1),t,col_k,kp1,1,col_j,kp1,1);
 }
}

void interchange(double[] col_k, int k, int l) {
 ...
}

Figure 6. Java Linpack benchmark after refactoring

The parallelisation of this case study (Figure 7) was
performed by making the execution of the method dgefa a
parallel region and applying the for work-sharing
construct over the reduceAllCols method calls. This case
also includes the usage of 4 barrier points (1 before and 3
after method calls) and 2 master directives.

Figure 7. Parallelisation of the Java Linpack benchmark

Figure 8 shows the same example with annotations (for
clarity, the body of each method was omitted).

In this case, when using annotations no additional code
is required, besides the introduction of annotations in the
bse program. The base program can be complied with a
standard Java compiler. The AOmpLib is only required to
import annotation definitions. In this case, the command
line for program execution must specify the use of the
aspect weaver as java agent in order to perform load-time
weaving of the required AOmpLib aspects.

@Parallel
int dgefa(double a[][], int lda, int n, int ipvt[]) {
 ...
}

@For
@BarrierAfter
void reduceAllCols(int startc, int endc, int is /* ... */}) {
 ...
}

@Master
@BarrierBefore
@BarrierAfter
void interchange(double[] col_k, int k, int l) {
 ...
}

@Master
@BarrierAfter
void dscal(int n, double da, double dx[] /* ... */) {
 ...
}

Figure 8. Parallelisation of the Java Linpack benchmark with annotations

aspect ParallelLinpack extends ParallelRegion {

 pointcut parallelMethod():
 call(int Linpack.dgefa(..));

 pointcut scheduleForStatic():
 call(void reduceAllCols(..));

 pointcut master():
 call(void Linpack.interchange(..))
 || call(void Linpack.dscal(..));

 pointcut barrierBefore():
 call(void Linpack.interchange(..))

 pointcut barrierAfter():
 call(void reduceAllCols(..))
 || call(void Linpack.interchange(..))
 || call(void Linpack.dscal(..));

}

IV. IMPLEMENTATION OVERVIEW
This section describes the implementation of three

provided mechanisms: parallel regions and for work-
sharing constructs with static and dynamic scheduling.
Those mechanisms were selected due to their
implementation simplicity. The implementation of many
other mechanisms shares this simplicity but a few
implementations are more intricate and their description is
out of the scope of this paper since it requires a deeper
understanding of AspectJ mechanism.

The parallel region aspect spawns a new set of threads
to execute the specified method body (Figure 9). The
aspect declares an abstract pointcut that is defined in each
mechanism usage (see Figure 4 for a concrete usage of
this abstract aspect).

 public abstract aspect ParallelRegion {

 abstract pointcut parallelMethod();

 void around() : parallelMethod() {

 for(int i=0; i< numberOfThreads -1; i++) {

 threads[i] = new Thread() {

 void run() {
 initialiseMyId();
 proceed();
 }

 }
 thread[i].start();
 }

 proceed();
 joinAllspawnedThreads(); // wait for other threads
 }

 }

Figure 9: Implementation of a parallel region aspect module

The aspect intercepts each method call declared as a
parallel region (around advice statement in the figure) and
spawns the number of threads defined for the given
region. Each thread initialises its local id (a thread local
variable) and starts the execution of the original method
(proceed statement). After spawning all threads, the
master thread executes itself the parallel region, also
calling the proceed statement. After the method
completion the master thread waits for all spawned
threads to finish.

The for work-sharing construct with static scheduling
gathers the for method parameters and updates the loop
iteration range according the thread id (see Figure 10 for a
simplified implementation, note that the actual
expressions to compute the lower and upper bounds are
slightly more complex). For simplicity the chunk size was
defined as one.

 abstract pointcut forMethod(int,int);

 void around(int i0, int in) : forMethod(int,int) {

 int myId = getThreadId();

 int lowerlimit = myid*(in-i0)/numberOfThreads;

 int upperLimit = (myid+1)*(in-i0)/numberOfThreads;

 proceed(lowerLimit,upperLimit);

 }

 }

Figure 10: Implementation of a for (static scheduling)

The around advice body gathers the first two method
parameters (the loop iteration space begin and end), and
calls the original method with thread specific parameters.

The dynamic for work-sharing works as follows
(Figure 11): intercepts the for method, calculates the
number of iterations within the for and assigns an initial
task to each thread. While there are tasks to perform,
threads will execute them and request for more. Each
thread, after finishing its work, will call a barrier. The
method getTask() stores in a local variable the current for
iteration, incrementing the iteration number at each call,
and returning a value that corresponds to the task that the
thread will execute. To ensure that the same task will not
be assigned to different threads, a synchronised Java
routine is used.
 void around(int i0,int in,int is) : dynamicfor(i0,in,is) {

 int number_of_tasks = (in-i0)/is;

 int iteration = getTask();

 while(iteration < number_of_tasks) {

 proceed(iteration,iteration+chunk,incr);

 iteration = getTask();

 }

 // call barrier

 }

Figure 11: Implementation of a for (dynamic scheduling)

The current AspectJ weaver and the JIT compiler can
inline most of the code specified in separated methods. In
certain cases, refactoring loops into methods can even
provide a performance improvement, since the compiler
can use better heuristics to decide when it is worth to
inline a call (there is however some performance penalty
when methods can be overridden in derived classes).
Figure 12 illustrates the weaving process by showing the
code that would be generated from the code of Figure 6
after applying the aspect module of Figure 7 (actually this
code is similar to the code from JGF benchmark
implemented with Java threads).

int dgefa(double a[][], int lda, int n, int ipvt[]) {

 for(int i=0; i<nthreads-1; i++) {

 threads[i] = new Thread() {

 void run() {

 initialiseThreadId();

 original_dgefa(/* parameters omitted */);

 }

 }

 }

 original_dgefa(/* parameters omitted */)

 joinAllspawnedThreads(); // wait for other threads

}

final int original_dgefa(/* ... */) {

 ... // original dgefa code is placed here

}

final void reduceAllCols(int i0, int in, /* ... */) {

 int myId = getThreadId();

 int lowerlimit = myid*(in-i0)/numberOfThreads;

 int upperLimit = (myid+1)*(in-i0)/numberOfThreads;

 original_reduceAllCols(lowerlimit, upperLimit /* ... */);

}

final void original_reduceAllCols(/* ... */) {

 ... // original code is placed here

}

Figure 12: Sketch of the code generated from Java Linpack

The original methods are rewritten into new methods
(orignal_dgefa and original_reduceAllCols), which are
called inside new generated methods. These new methods
replace the old ones in client calls and include the code
provided in the advice, replacing the proceed keyword
with the method called.

V. EVALUATION
This section presents an evaluation of the proposed

collection, by providing high level benchmarks, using the
Java Grande Forum (JGF) benchmarks. The benchmarks
were performed on two machines, a typical desktop
machine and a server machine:
1. Intel i7 (with total of four 3.2 GHz cores, sharing a

8MB L3 cache) with 8 GB of RAM. This machine
runs Lion OS and Sun JVM 1.6.0_43 64-bit Server
VM.

2. Intel Dual Xeon X5650 (with total of two six core
processors at 2.66 GHz, each processor with sharing a
12MB L3 cache) with 12 GB of RAM. This machine
runs Cent OS 5.3 and Sun JVM 1.6.0_43 64-bit
Server VM.

The benchmarks were performed by running JGF
section2 and section3 benchmarks. Results are presented
for 8 threads in the first machine and 24 threads on the
second machine (note: both machines support hyper-
threading, thus, these are the number of threads that
provide the best overall speedups across those
benchmarks). In all benchmarks the performance
difference between the JGF version and the AOmpLib
version is less than 1% (Figure 13). Note that both LUFact
and SOR benchmarks scale poorly due to the lack of
locality of memory accesses. The minor differences in
other benchmarks are explained by overheads introduced
by aspects.

0"

2"

4"

6"

8"

10"

12"

14"

16"

18"

i7"*"8"threads" Xeon"*"24"threads"

Sp
ee
d*
up

"

Crypt"JGF" Crypt"Aomp" LUFact"JGF" LUFact"Aomp"
Series"JGF" Series"Aomp" SOR"JGF" SOR"Aomp"
Sparse"JGF" Sparse"Aomp" MolDyn"JGF" MolDyn"Aomp"
Monte"Carlo"JGF" MonteCarlo"Aomp" RayTracer"JGF" RayTracer"Aomp"

Figure 13. Speed-up with Java threads (JGF) and the proposed approach

(Aomp).

Programmability is very hard to assess, even among
sequential programming community. In order to provide
an indication of the AOmpLib effectiveness, Table 3
shows the refactoring and abstractions required for each
benchmark. Refactoring is classified in two types: i)

M2M-Move to method; ii) M2FOR – Move to for
method. Abstractions used are as follows: PR-Parallel
region; FOR-for method; BR- barrier; MA – master; TLF-
Thread Local Field, CS – Case specific.

 Table 2. Refactoring and abstractions used

 Note that most benchmarks require a few refactorings

(two in most cases) and that the Sparse benchmark
requires a case specific for scheduling strategy and a case
specific aspect.

Refactoring can improve the base code in most of the
cases, since it frequently encapsulates a set of well-
defined steps into a given method. Figure 14 shows two of
the required refactorings for the MolDyn case study from
Figure 2. Methods compute_forces and third_newton_law
are two of the required refactoring that reflect well-
defined steps of the algorithm.

 class md {
 static particle one [] = …;
 int movemx = …;

 int mdsize = …;

 void runiters(){
 for (move=0; move<movemx; move++) {
 for (i=0; i<mdsize; i++) {
 one[i].domove(); /* move particles & update velocities */
 }
 compute_forces(0,mdsize,1);
 … // other simulation steps
 }
 }
 // Refactor M2FOR
 public void compute_forces(int i0, int in, int is) {
 for(int i=i0; i<in; i+=is) {
 one[i].force(i); /* compute forces */
 }
 }

}

 class particle {
 double xcoord, xvelocity, xforce;

 void domove() {
 xcoord = xcoord + xvelocity + xforce;
 … // other computations
 }
 void force(int x) {
 for (i=x+1; i<mdsize; i++) {
 forcex = …
 md.one[i].xforce = md.one[i].xforce - forcex;
 … // other computations
 third_newton_law(forcex, forcey, forcez, i);
 }
 }
 }

Figure 14. JGF MolDyn sequential implementation after refactoring

 Refactorings Abstractions
Crypt M2FOR, M2M PR, FOR (block)

LUFact M2FOR, M2M PR, FOR (block), 4xBR, 2xMA
Series M2FOR, M2M PR, FOR (block)
SOR M2FOR, M2M PR, FOR (block), BR

Sparse M2FOR, M2M PR, FOR (Case Specific), CS
MolDyn M2FOR, 3xM2M PR, FOR (cyclic), 2xTLF

MonteCarlo M2FOR, M2M PR, FOR (cyclic),

RayTracer M2FOR PR, FOR (cyclic), TLF

One main benefit of the proposed approach is the
ability to quickly (and independently) test new
parallelisation approaches. The JGF version uses a thread
local array of forces. Besides, JGF two other approaches
are possible: i) the use of a critical region on force update;
ii) the use of a lock per particle.

0"

1"

2"

3"

4"

5"

6"

7"

8"

864" 2048" 8788" 19652" 256k" 500k" 864" 2048" 8788" 19652" 256k" 500k" 8788"

Cri0cal" Locks" JGF"

Sp
ee
d>
up

"

4"Threads" 12"Threads"

Figure 15. Performance of different JGF MolDyn parallelisations

Figure 15 presents performance results obtained with
these two variants, for several numbers of particles (the
JGF performs a simulation with 8788 particles). From the
figure it is possible to observe that using a lock per
particle provides better performance than the JGF base
implementation for 12 threads. Moreover, for larger
number of particles (256k and 500k) and a small number
of threads the critical region approach is the best strategy.
This test shows one key point in the proposed approach:
multiple parallelisation approaches can be experimented
(and simultaneously supported) without modifying the
base program.

VI. RELATED WORK
Traditional parallel programing languages do not

promote modular and independent development.
However, in certain domains, such as in linear algebra,
common parallelism exploitation patterns have been
already encapsulated into libraries (e.g., Basic Linear
Algebra Libraries provided by vendors like Intel (MKL)
and AMD (ACML)). Thus, the library can include many
optimisations from that domain and the final user
transparently benefits from those optimised
implementations.

Unfortunately, in most domains it is not possible to
pack those optimised implementations into libraries. Thus
programmers must develop their own implementations.
With traditional parallel programming approaches, those
parallelisation concerns are mixed up with domain
specific concerns, making it impossible to develop
modular strategies and reuse those strategies across
applications.

OpenMP provides a clean separation between domain
specific code and parallelisation concerns (OpenMP
pragmas). However, only simple parallelisation concerns
are covered by the approach. To develop more
sophisticated approaches the programmer must frequently

resort to explicit parallel code that relies on threads ids.
Proposals for OpenMP for Java, such as JOMP [1], share
these problems. AOmpLib overcomes those limitations by
supporting an annotation style of programming for usage
in simple cases and by supporting the more advanced
pointcut based style for more complex parallelism
patterns.

Aspect oriented programming has been previously
explored to separate parallelisation concerns from the
domain specific code [11] and to encapsulate different
concerns into separate modules [12]. [13] provides a
template-based language aiming to encapsulate different
parallelisation concerns into different modules. The work
in [9] showed how several concurrency patterns and
mechanisms could be encapsulated into reusable aspect
modules. AOmpLib differs from these previous
approaches by providing a library of aspect modules that
mimics the OpenMP standard in Java.

[14] proposed a joint point model for loops, which
could avoid having to refactor for loops into methods.
However, moving loops into the object API (i.e., by
creating for methods) is important to promote independent
development since the parallelisation modules depend on
this explicit API. Intel Parallel Task Library [15] is an
example of a system where there is a special construct to
express loops. Exposing loops at the object interface level
is the key to enable aspect modules that implement loop
scheduling strategies.

[16] introduced the concept of asynchronous advice, a
technique to delay the execution of the code associated to
a pointcut. The idea is similar to delay execution of
certain blocks of code, which can also be used to
introduce parallelism.

VII. CONCLUSION
This paper describes the AOmpLib approach, which

provides a library of aspect modules that mimics the
OpenMP standard in Java. The proposed constructs are
closely integrated into object-oriented systems: tasks and
synchronisation points are defined at object boundary
(e.g., method calls).

The library is fully implemented as reusable aspect
modules and supports two different programming styles:
annotations and traditional AOP aspect extension through
pointcuts.

AOmpLib is a step further in the direction of providing
modular and reusable parallelisation concerns.
Nevertheless, the base code should be suitable for
parallelisation. Programmers should select an algorithm to
express domain specific concerns that supports
parallelisation. There can also be parallelisation blockers
in certain codes that pre-empt the exploitation of
parallelism. Thus, designing the base domain-specific
code should be a shared task between scientists and
computer science specialists to ensure that a proper
algorithm is selected and that no parallelisation blockers
are introduced in the coding of the algorithm.

The library is being successfully applied to many Java
frameworks, enabling the independent development of
parallelism modules. One of such cases is the JECoLi

(Java Evolutionary Computation Library) that implements
the main metaheuristic optimisation algorithms [17][18].
This case study is an illustrative usage of AOmpLib in a
large-scale Java framework.

 Current work includes the investigation of the
feasibility of this approach in more irregular algorithms
(e.g., graph based) and the optimisation of several
mechanisms in the collection (e.g., by using concurrency
features introduced in Java 7).

ACKNOWLEDGMENT
This work is funded by ERDF - European Regional

Development Fund through the COMPETE Programme
(operational programme for competitiveness) and by
National Funds through the FCT - Fundação para a Ciência
e a Tecnologia (Portuguese Foundation for Science and
Technology) within projects FCOMP-01-0124-FEDER-
011413 and FCOMP-01-0124-FEDER-010152.

REFERENCES
[1] J. Bull and M. Kambites, “JOMP—an OpenMP-like interface for

Java”, Proceedings of the ACM 2000 conference on Java Grande,
California, June, 2000. doi: 10.1145/337449.337466.

[2] A. Yonezawa and M. Tokoro, (ed), “Object-Oriented Concurrent
Programming”, MIT Press, 1987.

[3] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.
Loingtier and J. Irwin, “Aspect-Oriented Programming”
ECOOP’97, Jyväskylä, Finland, June, 1997. doi:
10.1007/BFb0053381

[4] J. Smith, J. Bull and J. Obdrzálek, “A Parallel Java Grande
Benchmark Suite”, Supercomputing Conference (SC 2001),
Denver, Nov. 2001. doi: 10.1145/582034.582042.

[5] B. Hess, C. Kutzner, D. Spoel and E. Lindahl, “Gromacs 4:
Algorithms for highly efficient, load-balanced, and scalable
molecular simulation”, J. Chem. Theory Comput. 4, 3 (March
2008) pp 435-447. doi: 10.1021/ct700301q.

[6] L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N.
Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan and K. Schulten,
“Namd2: Greater scalability for parallel molecular dynamics”,
Journal of Computational Physics”, 151, 1, May 1999, pp 283-312.
doi: 10.1006/jcph.1999.6201.

[7] M. Klemm, R. Veldema, M. Bezold and M. Philippsen, “A
Proposal for OpenMP for Java”, Second International Workshop
on OpenMP (IWOMP 2006), Reims, France, June, 2006. doi:
10.1007/978-3-540-68555-5_33.

[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and W.
Griswold, “An Overview of AspectJ”, ECOOP 2001. LNCS.
Budapest, Hungary, June, 2001. doi: 10.1007/3-540-45337-7_18.

[9] C. Cunha, J. Sobral and M. Monteiro, “Reusable Aspect-Oriented
Implementations of Concurrency Patterns and Mechanisms”,
AOSD’06, Bonn, Germany, March, 2006. doi:
10.1145/1119655.1119674.

[10] www.netlib.org/benchmark/linpackjava
[11] B. Harbulot and J. Gurd, “Using AspectJ to Separate Concerns in

Parallel Scientific Java Code”, AOSD 2004, Lancaster, UK, March
2004. doi: 10.1145/976270.976286.

[12] J. Sobral, “Incrementally developing parallel applications with
AspectJ”, 20th IEEE International Parallel & Distributed
Processing Symposium (IPDPS 06), Greece, Rhodes, April 2006.
doi: 10.1109/IPDPS.2006.1639352.

[13] R. Gonçalves and J. Sobral, “Pluggable Parallelization”, 18th ACM
international symposium on High Performance Distributed
computing, (HPDC 09), Munique, June 2009. 11-20. doi:
10.1145/1551609.1551614.

[14] B Harbulot, J. Gurd “A join point for loops in AspectJ” In
Proceedings of the 5th international conference on Aspect-oriented
software development (AOSD '06). ACM, New York, NY, USA,
63-74. doi: 10.1145/1119655.1119666

[15] D. Leijen, W. Schulte and S. Burckhardt, “The design of a task
parallel library” In Proceedings of the 24th ACM SIGPLAN
conference on Object oriented programming systems languages
and applications (OOPSLA '09). ACM, New York, NY, USA, 227-
242. doi: 10.1145/1640089.1640106.

[16] D. Ansaloni, W. Binder, A. Villazón and P. Moret, “Parallel
dynamic analysis on multicores with aspect-oriented
programming”. In Proceedings of the 9th International Conference
on Aspect-Oriented Software Development (AOSD '10). ACM,
New York, NY, USA, 1-12. doi: 10.1145/1739230.1739232

[17] http://darwin.di.uminho.pt/jecoli
[18] J. Pinho, J. Sobral and M. Rocha, “Parallel evolutionary

computation in bioinformatics applications”, May 2013. doi:
10.1016/j.cmpb.2012.10.001.

