Formal Logic and Deduction Systems
Software Formal Verification

Maria João Frade
Departmento de Informática
Universidade do Minho

2008/2009
What is a (formal) logic?

Logic is defined as the study of the principles of reasoning. One of its branches is symbolic logic, that studies formal logic.

- A **formal logic** is a language equipped with rules for deducing the truth of one sentence from that of another.

- A logic consists of
 - A **logical language** in which (well-formed) sentences are expressed.
 - A **semantics** that distinguishes the valid sentences from the refutable ones.
 - A **proof system** for constructing arguments justifying valid sentences.

- Examples: propositional logic, first-order logic, higher-order logic, and modal logic.
What is a logical language?

A logical language consists of

- *logical symbols* whose interpretations are fixed
- *non-logical symbols* whose interpretations vary

These symbols are combined together to form *well-formed formulas*.
Logic and computer science share a symbiotic relationship
- Logic provides language and methods for the study of theoretical computer science.
- Computers provide a concrete setting for the implementation of logic.

Formal logic makes it possible to calculate consequences at the symbolic level, so computers can be used to automate such symbolic calculations.

Moreover, logic can be used to model the situations we encounter as computer science professionals, in such a way that we can reason about them formally.
Classical logic *versus* intuitionistic logic

- **The classical understanding of logic** is based on the notion of *truth*. The truth of a statement is “absolute” and independent of any reasoning, understanding, or action.
 - Statements are either true or false. (“false” ↔ “not true”)
 - *tertium non datur* principle
 “\(A \lor \neg A \)” must hold no matter what the meaning of \(A \) is.

- **Intuitionistic logic** is a branch of formal logic that rejects this guiding principle.
 - A statement \(A \) is “true” if we can prove it, or is “false” if we can show that if we have a proof of \(A \) we get a contradiction.
 - One judgements about a statement are based on the existence of a proof or “construction” of that statement.
 - To show “\(A \lor \neg A \)” one have to show \(A \) or \(\neg A \). If neither of these can be shown, then the putative truth of the disjunction has no justification.
Classical logic *versus* intuitionistic logic

- Much of standard mathematics can be done within the framework of intuitionistic logic, but the task is very difficult, so mathematicians use methods of classical logic (as proofs by contradiction).

- However the philosophy behind intuitionistic logic is appealing for a computer scientist. For an intuitionist, a mathematical object (such as the solution of an equation) does not exist unless a finite construction (algorithm) can be given for that object.
Course overview

- Classical Propositional Logic
- Classical First-Order Logic
- Higher-Order Logic
- Induction
- Intuitionism and the Curry-Howard Isomorphism
- First-Order Theories
- Decision Procedures for Satisfiability
- ...
- The Coq proof-assistant
A First Course in Logic: An Introduction to Model Theory, Proof Theory, Computability, and Complexity
Shawn Hedman

Michael Huth & Mark Ryan
Logic in Computer Science: Modelling and Reasoning About Systems

Aaron R. Bradley & Zohar Manna
The Calculus of Computation: Decision Procedures with Applications to Verification
Springer (2007)
Bibliography

Morten Heine Sørensen & Pawel Urzyczyn
Lectures on the Curry-Howard Isomorphism
http://2020ok.com/books/35/lectures-on-the-curry-howard-isomorphism-37235.htm

Yves Bertot & Pierre Castéran
Interactive Theorem Proving and Program Development Coq’Art: The Calculus of Inductive Constructions

The Coq proof assistant
The latest version: Coq 8.2
http://coq.inria.fr/