Monoid Modules and Structured Documents Algebra

Andreas Zelend

RAMiCS 15
30. September 2015
STRUCTURED DOCUMENT ALGEBRA

GOALS

- A simple yet effective algebra of structured documents such as collections of composed features
- Formal reasoning about the construction process of documents
- More general operations, notably deletion, than Feature Algebra
Variation Points and Fragments

- Set V of *variation points (VPs)* at which things may be inserted
- Set $F(V)$ of *(document) fragments* which may, among other things, contain VPs from V
- every VP is a (yet unfilled) fragment by itself, i.e., $V \subseteq F(V)$
- A *text* is a fragment without VPs
Variation Points and Fragments

- To make error handling algebraically nicer we use
 1. a default fragment 0 and
 2. an error fragment ⊥

- The addition, or supremum, operator + on fragments has the axioms

\[0 + x = x \quad ⊥ + x = ⊥ \quad f_i + f_j = ⊥ \quad (i \neq j) \]

- Together with associativity, idempotence and commutativity this structure forms a flat lattice with least element 0 and greatest element ⊥
Modules

• A module is a partial function \(m : V \rightsquigarrow F(V) \)

• VP \(v \) is assigned in \(m \) if \(v \in \text{dom}(m) \), otherwise unassigned or external

• By using partial functions rather than relations, a VP can be filled with at most one fragment in any legal module (uniqueness)

• Different VPs may have assigned the same fragment to them (a module need not be an injective partial function)

• Simplest module: \(0 \) (empty module)
Module Addition

- We want to construct larger modules step by step by coupling more and more VPs with fragments

- Central operation: *module addition* $+$
 - Fuses two modules while maintaining uniqueness (and signalling an error upon a conflict)
 - Desired properties: $+$ should be commutative, associative and idempotent
Module Addition

- Module addition can be defined as the lifting of $+$ on fragments:

$$(m + n)(v) = \begin{cases}
 m(v) & \text{if } v \in \text{dom}(m) - \text{dom}(n) \\
 n(v) & \text{if } v \in \text{dom}(n) - \text{dom}(m) \\
 m(v) + n(v) & \text{if } v \in \text{dom}(m) \cap \text{dom}(n) \\
 \text{undefined} & \text{if } v \not\in \text{dom}(m) \cup \text{dom}(n)
\end{cases}$$

- If in the third case $m(v) \neq n(v)$ and $m(v), n(v) \neq 0$ then

$$(m + n)(v) = \frac{1}{0}, \text{ thus signalling an error}$$
Module Addition

- The set of modules with $+$ and the neutral element 0 forms a commutative monoid.

- The least element w.r.t. natural order \leq is the empty module 0 and the top element is the module t with $t(v) = \notin$ for any $v \in V$.

- Modules m and n are called compatible, in signs $m \downarrow n$, if their fragments coincide on their shared domains, i.e.,

$$m \downarrow n \iff \forall v \in \text{dom}(m) \cap \text{dom}(n) : m(v) = n(v).$$
• The module addition \textit{class} + \textit{stack} + \textit{count} is represented by the left module.

\textbf{Module Addition}

```
class Stack {
    int ctr = 0;
    int size() {
        return ctr;
    }

    String s = new String();
    void empty() {
        ctr = 0;
        s = "";
    }

    void push(char a) {
        ctr++;
        s = String.valueOf(a).concat(s);
    }

    void pop() {
        ctr--;
        s = s.substring(1);
    }

    char top() {
        return s.charAt(0);
    }
}
```
Subtraction

- For modules m and n we define the *subtraction* — via restriction $|$ as

$$m - n = df \quad m \big|_{\text{dom}(m) - \text{dom}(n)}$$

- This spells out to

$$(m - n)(v) = df \begin{cases}
 m(v) & \text{if } v \in \text{dom}(m) - \text{dom}(n) \\
 \text{undefined} & \text{otherwise}
\end{cases}$$
Abstracting from SDA

• Intermediate summary:

• The set M of modules with $+$ and $-$ forms an algebraic structure $SDA =_{df} (M, +, -, 0)$ such that $(M, +, 0)$ is an idempotent and commutative monoid and which satisfies the following laws for all $l, m, n \in M$:

1. $(l - m) - n = l - (m + n)$,
2. $(l + m) - n = (l - n) + (m - l)$,
3. $0 - l = 0$,
4. $l - 0 = l$.
Now we want to abstract from modules. Therefore we define *monoid modules* (m-module)

A *monoid module* (m-module) is an algebraic structure \((B, M, :)\) where

- \((M, +, 0)\) is an idempotent and commutative monoid,
- \((B, +, \cdot, 0, 1, \neg)\) is a Boolean algebra in which 0 and 1 are the least and greatest element and \(\cdot\) and \(+\) denote meet and join,
Abstracting from SDA II

• The restriction, or scalar product, $:$ is a mapping $B \times M \rightarrow M$ satisfying for all $p, q \in B$ and $m, n \in M$:

$(p + q) : m = p : m + q : m$,

$p : (m + n) = p : m + p : n$,

$0 : m = 0$,

$(p \cdot q) : m = p : (q : m)$,

$1 : m = m$,

$p : 0 = 0$.

• We define the natural order on $(M, +, 0)$ by $m \leq n \iff m + n = n$. Therefore $+$ is isotone in both arguments.
As a consequence we have:

1. Restriction : is isotone in both arguments.

2. $p : m \leq m$.

3. $p : (q : m) = q : (p : m)$

The structure $RMM = (\mathcal{P}(M), \mathcal{P}(M \times N), :)$, where $:$ is restriction, i.e., $p : m = \{(x, y) \mid x \in p \land (x, y) \in m\}$, forms an m-module.
To model subtraction we extend m-modules with the predomain operator $\Gamma : M \rightarrow B$.

A predomain monoid module (predomain m-module) is a structure $(B, M, :, \Gamma)$ such that $(B, M, :)$ is a m-module and $\Gamma : M \rightarrow B$ satisfies for all $p \in B$ and $m \in M$:

\[m \leq \Gamma m : m , \quad \Gamma (p : m) \leq p . \]
Predomain Monoid Modules

• In a predomain m-module \(\overline{m} \) is the least left preserver of \(m \) and \(\neg \overline{m} \) is the greatest left annihilator:

\[
(\text{lbp}) \quad \overline{m} \leq p \iff m \leq p : m, \quad (\text{gla}) \quad p \leq \neg \overline{m} \iff p : m \leq 0.
\]

• In a predomain m-module \((B, M, :, \overline{\quad})\) for all \(p \in B \) and \(m, n \in M \):

1. \(m = 0 \iff \overline{m} = 0 \),
2. \(m \leq n \implies \overline{m} \leq \overline{n} \),
3. \(m = \overline{m} : m \),
4. \(\overline{(m + n)} = \overline{m} + \overline{n} \),
5. \(\overline{(p : m) : m} = p : m \),
6. \(\overline{(p : m)} = p \cdot \overline{m} \).
Predomain Monoid Modules

• By defining $m = \{ x \mid (x, y) \in m \}$ RMM becomes a predomain m-module.

• Using an RMM over binary functional relations $R \subseteq V \times F(V)$, i.e., $R \overset{\sim}{;} R \subseteq \text{id}(F(V))$, allows us to reason about SDA.

• As a result, SDA’s subtraction $m - n$ of modules is equivalent to $\neg \neg n : m$ in the corresponding RMM.
Predomain Monoid Modules

- SDA laws for subtractions also hold in a predomain m-module:

1. $\lceil (\neg n : m) \rceil = \lceil m \cdot \neg n \rceil$
2. $(\neg n : 0 = 0)$
3. $\neg (l : (m + n)) = \neg l : m + \neg l : n$
4. $\neg (m + n) : l = \neg n : (\neg m : l)$
5. $\neg 0 : m = m$
6. $\neg m : m = 0$
7. $\neg n : m \leq m$
8. $m \leq n \implies \neg n : m = 0$
Overriding (SDA)

- Using addition and subtraction we can define *overriding* (similar to the overriding known from OOP)

- The module \(m \rightarrow n \) which results from overriding \(n \) by \(m \) is defined as

\[
m \rightarrow n = df \ m + (n - m)
\]

- This replaces all assignments in \(n \) for which \(m \) also provides a value

- \(\rightarrow \) is associative and idempotent with neutral element 0, but not commutative
Overriding (predomain m-module)

- SDA’s overriding operator $m \rightarrow n$ can also be defined in a predomain m-module: $m \rightarrow n =_{df} m + \neg \Diamond m : n$.

- In a predomain m-module $(B, M, ::, \Diamond)$ for all $p \in B$ and $l, m, n \in M$:

 1. $0 \rightarrow n = n$,
 2. $m \rightarrow 0 = m$,
 3. $m \leq m \rightarrow n$,
 4. $m = \Diamond m : (m \rightarrow n)$,
 5. $(m \rightarrow n) = \Diamond m + \Diamond n$,
 6. $\Diamond m \geq \Diamond n \Rightarrow m \rightarrow n = m$,
 7. $l \rightarrow (m + n) = (l \rightarrow m) + (l \rightarrow n)$.

Transformations

- By a *transformation* or *modification* or *refactoring* we mean a total function $T : F(V) \to F(V)$. By $T \cdot m$ we denote the *application* of T to a module m. It yields a new module defined by

$$
(T \cdot m)(v) =_{df} \begin{cases}
T(m(v)) & \text{if } v \in \text{dom}(m) \\
\text{undefined} & \text{otherwise}
\end{cases}
$$

- Since we don’t want to allow transformations to mask errors that are related to module addition, we add the requirement

$$
T(\frac{1}{2}) = \frac{1}{2}
$$

- A transformation might leave many fragments unchanged, i.e., act as the identity on them.
Structure of Transformations

- A *monoid of transformations* is a structure $F = (F, \circ, 1)$, where F is a set of total functions $f : X \rightarrow X$ over some set X, closed under function composition \circ, and 1 the identity function.

- The pair (X, F) is called *transformation monoid* of X.
With this, we now can extend the list of requirements on transformations:

1. \[T \cdot (m + n) = T \cdot m + n \iff T|_{\text{ran}(n)} = 1|_{\text{ran}(n)} \land m \downarrow n, \]
2. \[1 \cdot m = m, \]
3. \[T \cdot 0 = 0. \]

0 being an annihilator means that transformations can only change existing fragments rather than create new ones.

We define the application equivalence \(\approx \) of two transformations \(S, T \) by

\[S \approx T \iff_{df} \forall m : S \cdot m = T \cdot m \]
We define the set of fragments changed by a transformation T:

- $T_m = \{ f \in F(V) \mid T(f) \neq f \}$ the modified fragments of T
- $T_v = \{ T(f) \in F(V) \mid T(f) \neq f \} = \text{ran}(T|_{T_m})$ the value set of T

Now we can characterise situations in which transformations can be omitted or commute:

1. $T \cdot (S \cdot m) = S \cdot m$ if $T_m \subseteq S_m \land T_m \cap S_v = \emptyset$.
2. T and S commute if $T_m \cap S_m = \emptyset \land T_m \cap S_v = \emptyset \land T_v \cap S_m = \emptyset$.
Summary

• Analysed the natural order of modules

• Abstracted from SDA to a predomain monoid module

• Had a closer look at the structure of transformations

• Next step will be the addition transformations to predomain m-modules