
Towards a probabilistic Alloy

DALI/TRUST Kick-off Workshop

University of Minho, September 19-20, 2016

J.N. Oliveira & M.A. Cunha

INESC TEC & University of Minho

Prelude Probabilism Pobabilistic contracts References

Prelude

Sir Arthur Eddington (1882-1944):

”I cannot believe that
anything so ugly as
multiplication of matrices is
an essential part of the
scheme of nature”

(in ”Relativity Theory of Electrons and
Protons”, 1936).

Serious warning to mathematicians and physicists — notation
should be beautiful :-)

I agree — standard matrix notation is clumsy by modern
computer science standards.

Prelude Probabilism Pobabilistic contracts References

Prelude

First of all, don’t refer to it as multiplication but rather as
composition, as it generalizes function composition

(f · g) x = f (g x)

and relation composition,

y (R · S) x ⇔ 〈∃ z :: y R z ∧ z S x〉

compare with

y (M · N) x = 〈
∑

z :: (y R z)× (z S x)〉

where the infix y M z linking to relational notation is intentional.

In my view, any modelling tool should live peacefully with this
function→ relation→ matrix evolution in expressiveness.

Prelude Probabilism Pobabilistic contracts References

The evolution

Determinism (functions):

• Functional programming (FP)

• Imperative programming (if restricted)

Non-determinism (relations):

• Logic programming

• Relational modelling

Probabilism (matrices):

• Quantum programming

• Probabilistic modelling

Prelude Probabilism Pobabilistic contracts References

Alloy

Relational composition:

• The Swiss army knife of Alloy

• It subsumes function application and “field selection”

• Encourages a navigational (point-free) style based on pattern
x .(R.S).

• Example:

Person = {(P1),(P2),(P3),(P4)}
parent = {(P1,P2),(P1,P3),(P2,P4)}
me = {(P1)}
me.parent = {(P2),(P3)}
me.parent.parent = {(P4)}
Person.parent = {(P2),(P3),(P4)}

Prelude Probabilism Pobabilistic contracts References

Relations are Boolean matrices

The same in matrix form:

Note how me, me.parent etc are all at most Person 1
!◦oo .

Prelude Probabilism Pobabilistic contracts References

Functions are Boolean matrices

A relation B A
Voo is said to be a vector if either A or B are

the singleton type 1.

Relation 1 A
Voo is said to be a row-vector; clearly, V ⊆ !

Relation B 1
Voo is said to be a column-vector; clearly, V ⊆ !◦

Functions are Boolean matrices f such that

! · f = ! (1)

for instance
[
1 1

]
·
[

1 0 1
0 1 0

]
=
[
1 1 1

]
NB: mind the two polymorphic copies of ! : A→ 1, the
everywhere-1 function.

Prelude Probabilism Pobabilistic contracts References

Probabilistic functions

Function

��

f =

1 0 0 0
0 1 0 1
0 0 1 0



Probabilistic function

b·c

��

g =

1 0 0.5 0.1
0 0.7 0 0.9
0 0.3 0.5 0



Relation

��

d·e

hh

R = bgc =

1 0 1 1
0 1 0 1
0 1 1 0


Matrix

Both f and g satisfy (1) ; dRe =

1 0 0.5 0.5
0 0.5 0 0.5
0 0.5 0.5 0



Prelude Probabilism Pobabilistic contracts References

Probabilistic functions vs relations

Galois connection

bf c ⊆ R ⇔ f 6 dRe (2)

such that

bdRec = R

— that is, d e is injective and b c is surjective.

This enables us to regard the latter (supports) as a relational
abstract interpretation of probabilistic functions (PF).

The preorder (6) should rank PFs according to (lack of)
uniformity.

Prelude Probabilism Pobabilistic contracts References

Monoidal categories

Every stage in the hierarchy forms a monoidal category whose
composition has been given already, and whose tensor is based
on pairing:

M ⊗ N = (M · fst) O (N · snd) (3)

Pairing is a weak product for matrices (PFs included):

k = M O N ⇒
{

fst · k = M
snd · k = N

A A× B
fstoo snd // B

C

MON

OO

N

<<

M

bb

For pure functions this becomes a full categorial product.1

1See e.g. (Murta and Oliveira, 2015; Oliveira and Miraldo, 2016).

Prelude Probabilism Pobabilistic contracts References

Illustration

Example adapted from

[https://en.wikipedia.org/wiki/Bayesian_network]

Control a sprinkler to wet the grass in case it does not rain.

https://en.wikipedia.org/wiki/Bayesian_network

Prelude Probabilism Pobabilistic contracts References

Functional (deterministic) model

S = R = G = 2

sprinkler : R → S
sprinkler r = ¬ r

grass : S × R → G
grass (s, r) = s ∨ r

rain ∈ {0, 1}

G × (S × R)

S × R

grassOid
OO

R

sprinklerOid
OO

1

rain

OO

Grass always wet:

grass (sprinkler r , r) = ¬ r ∨ r = T

Altogether, two possible states {(1, (1, 0)), (1, (0, 1))} of type:

G × (S × R) 1
stateoo = (grass O id) · (sprinkler O id) · rain

Prelude Probabilism Pobabilistic contracts References

Bayesian networks

Previous model is not realistic — the picture actually found on
Wikipedia is:

Prelude Probabilism Pobabilistic contracts References

Bayesian network (probabilistic model)

Let

S = R = G = 2

S R
sprinkleroo =

[
0.60 0.99
0.40 0.01

]
R 1

rainoo =

[
0.80
0.20

]
G S × R

grassoo =

[
1.00 0.20 0.10 0.01

0 0.80 0.90 0.99

]

G × (S × R)

S × R

grassOid
OO

R

sprinklerOid
OO

1

rain

OO

The “same” state arrow

G × (S × R) 1
stateoo = (grass O id) · (sprinkler O id) · rain

but over a different category (next slide).

Prelude Probabilism Pobabilistic contracts References

Bayesian network (probabilistic model)

G × (S × R) 1
stateoo =

G S R

dry
off

no 0.4800
yes 0.0396

on
no 0.0320
yes 0.0000

wet
off

no 0.0000
yes 0.1584

on
no 0.2880
yes 0.0020

Moreover, we can define

1 G × (S × R)
grass wetoo = [0 1] · fst

1 G × (S × R)
rainingoo = [0 1] · snd · snd

etc. to obtain e.g. Pstate(grass wet) = grass wet · state = 44.84%.

Prelude Probabilism Pobabilistic contracts References

Bayesian network querying

Conditional probabilities over state distribution δ:

Pδ(a | b) =
(a× b) · δ

b · δ
where 1 S

a,boo 1
δoo (4)

Boolean vectors a and b describe event sets.

Recall

S × (G × R)

grass wet,raining
��

R
sprinklerO((grass·(sprinklerOid))Oid)oo

1 1

rain

OO
δ

ll

(grass wet×raining)·δ
grass wet·δ

oo

Forwards: Pδ(grass wet | raining) = 80.19%

Backwards: Pδ(raining | grass wet) = 35.77%

Prelude Probabilism Pobabilistic contracts References

By the way

Bayes theorem:

P(a | b) = P(b | a)
P(a)

P(b)
(5)

cf. (assuming δ : 1→ S):

Pδ(a | b) = Pδ(b | a)
Pδ(a)

Pδ(b)

⇔ { trivial }

Pδ(a | b) Pδ(b) = Pδ(b | a) Pδ(a)

⇔ { (4) twice }

(a× b) · δ = (b × a) · δ
�

Prelude Probabilism Pobabilistic contracts References

Towards probabilistic contracts

Pδ(raining | grass wet) = 35.77% — backwards reasoning — is
suggestive of (weakest) precondition validation — in a sense, it tells
how important raining is as cause for the grass to be wet (effect).

Note that probabilistic function

f : R → S × G

f = sprinkler O (grass · (sprinkler O id))

that is,

f =

no yes

off
dry 0.384 0.196
wet 0.216 0.794

on
dry 0.256 0.002
wet 0.144 0.008

describes a system that reacts to raining.

Prelude Probabilism Pobabilistic contracts References

Towards probabilistic contracts

In what sense — measure? — can we say that some f satisfies the
contract

grass wet raining
foo (6)

and what does (6) mean?

Back to pure function f : Y ← X :

q p
foo ⇔ 〈∀ x : x ∈ X : p x ⇒ q (f x)〉

or, if you wish,

q p
foo ⇔ ¬ 〈∃ x : x ∈ X : p x ∧ ¬ q (f x)〉

Prelude Probabilism Pobabilistic contracts References

Towards probabilistic contracts

That is, model checking q p
foo means finding those x ∈ X

that violate the contract.

In a probabilistic setting, such x ∈ X are captured by a
distribution δ : 1→ X .

Term q (f x) will then correspond to scalar 1 1
q·f ·xoo — a

probability.

But first we have to regard f as a (kind of) probabilistic relation,
as in the Bayesian network above — we need to have access to the
I/O behaviour of f .

Prelude Probabilism Pobabilistic contracts References

Towards probabilistic contracts

Recall that a probabilistic function f : A→ B (PF) is half way
between pure functions and relations: ! · f = ! holds and their
support bf c is a relation of the same type A→ B.

Below we will take PF

f =

a1 a2 a3
b1 0.7 0.01 1
b2 0.3 0.99 0

as example, with support

bf c =

a1 a2 a3
b1 1 1 1
b2 1 1 0

a relation which can be
mapped back to the PF

a1 a2 a3
b1 0.5 0.5 1
b2 0.5 0.5 0

as seen before.

Prelude Probabilism Pobabilistic contracts References

Towards probabilistic contracts

The I/O behaviour of f
knowing the distribution δ
of the inputs is given by γ
in

1

δ
��

γ

||
B × A A

f Oidoo

Example (f as before):

δ =

A

a1 0.1
a2 0.2
a3 0.7

Then

γ =

B × A

(b1, a1) 0.070
(b1, a2) 0.002
(b1, a3) 0.300
(b2, a1) 0.030
(b2, a2) 0.198
(b2, a3) 0

Prelude Probabilism Pobabilistic contracts References

Measuring probabilistic contracts

Let us define:

[[q p
foo]]δ = Pγ(q · fst | p · snd) (7)

where γ = (f O id) · δ — check the following diagram:

1

δ
��

γ

||
B × A

fst
��

snd

;; A
f Oidoo

fqq

p

��
B

q

;; 1

In the next slide we show that

[[q p
foo]]δ =

(q � p) · (f O id) · δ
p · δ

(8)

where p � q abbreviates p · fst × q · snd .

Prelude Probabilism Pobabilistic contracts References

Measuring probabilistic contracts

Spelling out
the meaning

of q p
foo

given
distribution δ
of inputs:

[[q p
foo]]δ

= { definition (7) }

P(f Oid)·δ(q · fst | p · snd)

= { definition (4) }

(q � p) · (f O id) · δ
p · snd · (f O id) · δ

= { go pointwise }

〈
∑

b, a : q b ∧ p a : (δ a) (b f a)〉
Pδ(p)

Case p = true simplifies (a lot!) to [[q true
foo]]δ = q · f · δ.

Prelude Probabilism Pobabilistic contracts References

Measuring probabilistic contracts

Example, recalling

f =

a1 a2 a3
b1 0.7 0.01 1
b2 0.3 0.99 0

and δ =
a1 0.1
a2 0.2
a3 0.7

Then, for instance,

{b2} {a1, a2}foo = 76%

{b2} {a3}foo = 0%

{b2} true
foo = 22.8%

true {a1, a2}foo = 100%

etc

Prelude Probabilism Pobabilistic contracts References

Measuring probabilistic contracts

I didn’t make a full sanity check of the definition, but some
expected laws are easy to check, cf. e.g.

[[true p
foo]]δ

= { unfold definition, true = > (1s everywhere) }

(>× p · snd) · (f O id) · δ
p · snd · (f O id) · δ

= { Hadamard product: >×M = M }

p · snd · (f O id) · δ
p · snd · (f O id) · δ

= { trivia }

1

�

Prelude Probabilism Pobabilistic contracts References

Measuring probabilistic contracts

However,

[[p false
goo]]δ =

(p · fst ×⊥ · snd) · (g O id) · δ
⊥ · δ

=
0

0

is mathematically undetermined (inconsistency).

Sequential rule — my guess is something like:

[[q r
f ·goo]]δ > [[q p

foo]]g ·δ × [[p r
goo]]δ

But be warned that, in the setting of McIver and Morgan (2005),
probabilistic Hoare triples are not compositional — will our
definition above remedy this?

(Future work.)

Prelude Probabilism Pobabilistic contracts References

Model checking probabilistic contracts

In Alloy, given

assert contract { all a:A | p[a] => q[a.f] }

executing

check contract for ... A

means finding a such that p a ∧ ¬ q (f a) holds.

Assume f probabilistic in ”Alloy++” :-). Then:

check contract >= 80% for ... A

would mean finding δ such that [[q p
foo]]δ < 0.8.

Prelude Probabilism Pobabilistic contracts References

Probabilistic Alloy?

Doable?

Hope so. (Free Alloy run-time matrices from the Boolean
dictatorship.)

There have been experiments with Alloy over multisets — see e.g.
Relational Modeling and Reasoning with Multisets and
Multirelations in Alloy (Sun et al., 2016).

At home: Alcino + JNO had some ideas about a quantitative
Alloy, several years ago... Weighted relations... Automated
analysis with an SMV solver...

Prelude Probabilism Pobabilistic contracts References

Probabilistic Alloy?

Excerpt from our unpublished (incomplete) note:

Syntactically we propose no extensions to the Alloy
language. On the contrary, we propose to reduce it by
removing arithmetic operators and the sum quantifier.

Semantically, the meaning of Alloy’s “dot-join” is relaxed
to numeric matrix-matrix and matrix-vector operations.
(It already is so, but restricted to Boolean 0 and 1.
Within 0s and 1s normal multiplication implements
intersection and union is normal addition minus
intersection (Oliveira, 2012) (...)

Trust is the right project to come back to this topic!

Prelude Probabilism Pobabilistic contracts References

Literature

There is work on the literature about conditioning in probabilistic
programming, see e.g. (Gretz et al., 2015), (McIver and Morgan,
2005), which can be of help.

Also algorithms that use ideas from program analysis in
probabilistic programming, see e.g. (Nori et al., 2014).

Prelude Probabilism Pobabilistic contracts References

Afterthought

(The drawing again!)

Recall matrix
supports.

Can the current
Alloy relational
engine help in
finding the
counter-example
distributions, as a
kind of AI?

f = b c, g = d e
etc.

Prelude Probabilism Pobabilistic contracts References

References

Prelude Probabilism Pobabilistic contracts References

F. Gretz, N. Jansen, B.L. Kaminski, J.-P. Katoen, A. McIver, and
F. Olmedo. Conditioning in probabilistic programming. CoRR,
abs/1504.00198, 2015. URL
http://arxiv.org/abs/1504.00198.

A. McIver and C. Morgan. Abstraction, Refinement and Proof for
Probabilistic Systems. Monographs in Computer Science.
Springer-Verlag, 2005. ISBN 0387401156.

D. Murta and J.N. Oliveira. A study of risk-aware program
transformation. SCP, 110:51–77, 2015.

A.V. Nori, C.-K. Hur, S.K. Rajamani, and S. Samuel. R2: an
efficient MCMC sampler for probabilistic programs. In
Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence, July 27 -31, 2014, Québec City, Québec, Canada.,
pages 2476–2482, 2014. URL http://www.aaai.org/ocs/

index.php/AAAI/AAAI14/paper/view/8192.

J.N. Oliveira. Towards a linear algebra of programming. FAoC, 24
(4-6):433–458, 2012.

J.N. Oliveira and V.C. Miraldo. “Keep definition, change category”

http://arxiv.org/abs/1504.00198
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8192
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8192

Prelude Probabilism Pobabilistic contracts References

— a practical approach to state-based system calculi. JLAMP,
85(4):449–474, 2016.

Peiyuan Sun, Zinovy Diskin, Micha l Antkiewicz, and Krzysztof
Czarnecki. Relational Modeling and Reasoning with Multisets
and Multirelations in Alloy. (GSDLAB-TR 2016-01-22), 2016.

	Prelude
	Probabilism
	Pobabilistic contracts

