Invariants as coreflexive bisimulations — in a coalgebraic setting

J.N. Oliveira1 Alexandra Silva2 Luís Barbosa1

1U. Minho, Braga 2CWI, Amsterdam

IFIP WG2.1 meeting \#62
Dec. 2006 Namur, Belgium
Examples of areas of computing which have well-established, widespread theories taught in undergraduate courses:

- Parsers and compilers
- Relational databases
- Automata, labelled transition systems

This time we look into the last one in the list.
Definition 1 (by R. Milner)

(Well-known — this version taken from the Wikipedia)
A **bisimulation** is a simulation between two LTS such that its converse is also a simulation, where a **simulation** between two LTS \((X, \Lambda, \rightarrow_X)\) and \((Y, \Lambda, \rightarrow_Y)\) is a relation \(R \subseteq X \times Y\) such that, if \((p, q) \in R\), then for all \(\alpha\) in \(\Lambda\), and for all \(p' \in S\), \(p \xrightarrow{\alpha} p'\) implies that there is a \(q'\) such that \(q \xrightarrow{\alpha} q'\) and \((p', q') \in R\):

\[
\begin{array}{c}
p \xleftarrow{R} q \\
\alpha \downarrow \quad \quad \quad \alpha \\
\downarrow \quad \quad \quad \downarrow \\
p' \xleftarrow{R} q'
\end{array}
\]

Typical example of classical, descriptive definition.
Definition 2 (by Aczel & Mendler):

Given two coalgebras $c : X \rightarrow F(X)$ and $d : Y \rightarrow F(Y)$ an F-bisimulation is a relation $R \subseteq X \times Y$ which can be extended to a coalgebra ρ such that projections π_1 and π_2 lift to F-comorphisms, as expressed by

```
\begin{align*}
X & \xrightarrow{\pi_1} R \xrightarrow{\rho} Y \\
F \pi_1 & \downarrow \quad \quad \quad \quad F \pi_2 \\
F X & \quad \quad \quad \quad \quad \quad \quad \quad F Y
\end{align*}
```

Simpler and generic (coalgebraic)
Example: Bisimulations

Definition 3 (by Bart Jacobs):
A bisimulation for coalgebras $c : X \rightarrow F(X)$ and $d : Y \rightarrow F(Y)$ is a relation $R \subseteq X \times Y$ which is “closed under c and d”:

$$(x, y) \in R \implies (c(x), d(y)) \in \text{Rel}(F)(R).$$

for all $x \in X$ and $y \in Y$.

($\text{Rel}(F)(R)$ stands for the relational lifting of R via functor F.)

Still coalgebraic, pointwise — somewhat disturbed by the lifting construct — see details in [4].
Question

Are all these “the same” definition?
We will check the equivalence of these definitions by
PF-transformation
Bisimulations PF-transformed

Let us implode the outermost \forall in Jacobs definition by PF-transformation:

\[
\langle \forall x, y : : x R y \Rightarrow (c x) \ Rel(F)(R) (d y) \rangle
\equiv \{ \text{PF-transform rule } (f b) R (g a) \equiv b(f^o \cdot R \cdot g)a \ \}
\langle \forall x, y : : x R y \Rightarrow x(c^o \cdot Rel(F)(R) \cdot d)y \rangle
\equiv \{ \text{drop variables (PF-transform of inclusion) } \}
R \subseteq c^o \cdot Rel(F)(R) \cdot d
\equiv \{ \text{introduce relator ; “al-djabr” rule } \}
c \cdot R \subseteq (F R) \cdot d
\equiv \{ \text{introduce Reynolds combinator } \}
c(F R \leftarrow R)d
Our PF-definition of bisimulation is similar to that presented by Roland Backhouse for dialgebras [2]: given dialgebra $F \xleftarrow{k} A \xrightarrow{R} GA$, relation $A \xleftarrow{R} A$ is a bisimulation of k iff

$$GR \subseteq k \circ FR \cdot k$$

$$F A \xleftarrow{k} G A$$

$$F A \xleftarrow{k} G A$$

$$F R$$

$$G R$$

(1)
“Reynolds arrow combinator” is a relation on functions

\[f(R \leftarrow S)g \equiv f \cdot S \subseteq R \cdot g \quad \text{cf. diagram} \]

useful in expressing properties of functions — namely \textit{monotonicity}

\[B \leftarrow^f A \text{ is monotonic } \equiv f(\leq_B \leftarrow \leq_A)f \]

\textit{lifting}

\[f \leq g \equiv f(\leq \leftarrow id)f \]

\textit{polymorphism (free theorem)}:

\[G A \leftarrow^f F A \text{ is polymorphic } \equiv \langle \forall R : : f(G R \leftarrow F R)f \rangle \]

etc
Recall database projections

\[\pi_{c,d}R \subseteq S \]
\[\equiv \{ \text{definition given in the other talk} \} \]
\[c \cdot R \cdot d^\circ \subseteq S \]
\[\equiv \{ \text{functions (2nd) “al-djabr” rule} \} \]
\[c \cdot R \subseteq S \cdot d \]
\[\equiv \{ \text{Reynolds combinator} \} \]
\[c(S \leftarrow R)d \]
\[\equiv \{ \text{Reynolds combinator} \} \]
\[c \cdot R \subseteq S \cdot d \]
\[\equiv \{ \text{functions (1st) “al-djabr” rule} \} \]
“Al-djabr” rule for projections

\[R \subseteq c^\circ \cdot S \cdot d \]

\[\equiv \{ \text{introduce } \bigcirc \} \]

\[R \subseteq \bigcirc_{c,d} S \]

Thus we get GC:

\[\pi_{c,d} R \subseteq S \equiv R \subseteq \bigcirc_{c,d} S \quad (2) \]

In the other talk we were interested in the lower adjoint \((\pi_{c,d})\); this time we will focus on the the upper adjoint:

\[x (\bigcirc_{c,d} S) y \equiv (c x) S (d y) \]
“Al-djabr” rule for projections

At once we get:

• $\pi_{c,d}$ and $\circ_{c,d}$ are monotonic

• Distribution properties (can be generalized to $n > 2$ arguments):

\[
\pi_{c,d}(R \cup S) = (\pi_{c,d}R) \cup (\pi_{c,d}S) \quad (3)
\]
\[
\circ_{c,d}(R \cap S) = (\circ_{c,d}R) \cap (\circ_{c,d}S) \quad (4)
\]

• etc
Why does Reynolds arrow matter?

Elegant and manageable PF-properties, eg.

\[id \leftarrow id = id \] (5)
\[(R \leftarrow S)^\circ = R^\circ \leftarrow S^\circ \] (6)
\[R \leftarrow S \subseteq V \leftarrow U \iff R \subseteq V \land U \subseteq S \] (7)
\[(R \leftarrow V) \cdot (S \leftarrow U) \subseteq (R \cdot S) \leftarrow (V \cdot U) \] (8)

as well as

\[(f \leftarrow g^\circ)h = f \cdot h \cdot g \] (9)

These are immediately applicable to our PF version of Jacobs’ definition. For instance, (5) ensures \(id \) as bisimulation between a given coalgebra and itself (next slide):
Why Reynolds arrow matters

Calculation

\[c(F \ id \leftarrow \ id) \equiv \{ \text{relator F preserves the identity} \} \]

\[c(id \leftarrow id) \equiv \{ (5) \} \]

\[c(id) \equiv \{ id \ x = x \} \]

\[c = d \]

Too simple and obvious, even without Reynolds arrow in the play.

What about the equivalence between Jacobs’s and Aczel-Mendler’s definitions?
Why Reynolds arrow matters

To the set of known rules about *Reynolds arrow*, we add the following:

\[
\text{pair } (r, s) \text{ is a tabulation} \\
\downarrow \\
(r \cdot s^\circ) \leftarrow (f \cdot g^\circ) = (r \leftarrow f) \cdot (s \leftarrow g)^\circ
\]

(10)

Tabulations

A pair of functions \(r \quad C \quad s\) form a tabulation iff \(\langle r, s \rangle\) is injective, that is,

\[
r^\circ \cdot r \cap s^\circ \cdot s = id
\]

holds
Why Reynolds arrow matters

Example — we check that π_1 and π_2 form a tabulation:

$$\pi_1^\circ \cdot \pi_1 \cap \pi_2^\circ \cdot \pi_2 = id$$

\[\equiv \begin{cases} \text{go pointwise, where } \cap \text{ is conjunction} \end{cases}\]

\[(b, a)(\pi_1^\circ \cdot \pi_1)(y, x) \land (b, a)(\pi_2^\circ \cdot \pi_2)(y, x) \equiv (b, a) = (y, x)\]

\[\equiv \begin{cases} \text{PF-transform rule } (f \ b)R(g \ a) \equiv b(f^\circ \cdot R \cdot g)a \text{ twice} \end{cases}\]

$$\pi_1(b, a) = \pi_1(y, x) \land \pi_2(b, a) = \pi_2(y, x) \equiv (b, a) = (y, x)$$

\[\equiv \begin{cases} \text{trivia} \end{cases}\]

$$b = y \land a = x \equiv (b, a) = (y, x)$$

NB: it is a standard result that every R can be factored in tabulation $R = f \cdot g^\circ$, eg. $R = \pi_1 \cdot \pi_2^\circ$.

Jacobs ≡ Aczel & Mendler

\[c(F R \leftarrow R) d \]

\[\equiv \{ \text{tabulate } R = \pi_1 \cdot \pi_2^\circ \} \]

\[c(F(\pi_1 \cdot \pi_2^\circ) \leftarrow (\pi_1 \cdot \pi_2^\circ)) d \]

\[\equiv \{ \text{relator commutes with composition and converse } \} \]

\[c(((F \pi_1) \cdot (F \pi_2)^\circ) \leftarrow (\pi_1 \cdot \pi_2^\circ)) d \]

\[\equiv \{ \text{new rule (10) } \} \]

\[c(((F \pi_1) \cdot (F \pi_2)^\circ \leftarrow (\pi_1 \cdot \pi_2^\circ)) d \]

\[\equiv \{ \text{converse rule (6) } \} \]

\[c((F \pi_1 \leftarrow \pi_1) \cdot (F \pi_2^\circ \leftarrow \pi_2^\circ)) d \]

\[\equiv \{ \text{go pointwise (composition) } \} \]

\[\langle \exists a : c(F \pi_1 \leftarrow \pi_1) a \land d(F \pi_2 \leftarrow \pi_2) a \rangle \]
Why Reynolds arrow matters

Meaning of $\langle \exists \ a : : \ c(F \pi_1 \leftarrow \pi_1)a \land d(F \pi_2 \leftarrow \pi_2)a \rangle$:

there exists a coalgebra a whose carrier is the “graph” of bisimulation R and which is such that projections π_1 and π_2 lift to the corresponding coalgebra morphisms.

Comments:

- One-slide-long proofs are easy to grasp
- Elegance of the calculation lies in the synergy with Reynolds arrow
- Rule (10) does most of the work — its proof is an example of generic, stepwise PF-reasoning (see this later on)
FDs on bisimulations

FD \(d \overset{R}{\rightarrow} c \) holds wherever \(R \) is a simple bisimulation from coalgebra \(d \) to coalgebra \(c \):

\[
c(F \; R \leftrightarrow \; R)\; d
\]

\[
\equiv \begin{cases} \{ \text{expand Reynolds combinator} \} \\
\end{cases}
\]

\[
c \cdot R \subseteq (F \; R) \cdot d
\]

\[
\equiv \begin{cases} \{ \text{functions (2nd) “al-djabr” rule} \} \\
\end{cases}
\]

\[
c \cdot R \cdot d^\circ \subseteq F \; R
\]

\[
\equiv \begin{cases} \{ \text{duplicate and take converses} \} \\
\end{cases}
\]

\[
c \cdot R \cdot d^\circ \subseteq F \; R \land d \cdot R^\circ \cdot c^\circ \subseteq F \; R^\circ
\]

\[
\Rightarrow \begin{cases} \{ \text{monotonicity of composition ; relators} \} \\
\end{cases}
\]

\[
c \cdot R \cdot d^\circ \cdot d \cdot R^\circ \cdot c^\circ \subseteq F(R \cdot R^\circ)
\]
FDs on bisimulations

\[\Rightarrow \quad \{ \ R \text{ is simple ; } F \ id = id \ \} \]

\[c \cdot R \cdot d^\circ \cdot d \cdot R^\circ \cdot c^\circ \subseteq id \]

\[\equiv \quad \{ \ \text{FD in kernel's version} \ \} \]

\[\ker (d \cdot R^\circ) \subseteq \ker c \]

\[\equiv \quad \{ \ \text{FD in injectivity preorder version} \ \} \]

\[c \leq d \cdot R^\circ \]

In other words: \(c \) can be less injective than \(d \) as far as “allowed by” \(R^\circ \) (which is injective).

So (implementation) \(d \) is allowed to distinguish states which (specification) \(c \) does not.
Invariants

Fact $c(F \text{id} \leftarrow \text{id})c$ above already tells us that id is a (trivial) F-invariant for coalgebra c. In general:

F-invariants

In this setting, an F-invariant Φ simply is a coreflexive bisimulation between a coalgebra and itself:

$$c(F \Phi \leftarrow \Phi)c$$

(11)

Invariants bring about modalities:

$$c(F \Phi \leftarrow \Phi)c \equiv \Phi \subseteq c \circ (F \Phi) \cdot c$$

$\bigcirc_c \Phi$

cf. the “next time X holds” modal operator:

$$\bigcirc_c X \overset{\text{def}}{=} c \circ (F X) \cdot c$$
Invariants — related work

Elegant PF-definition of a (relational) F-invariant already in Gibbons et al “When is a function a fold or an unfold”? [3]:

F-invariant
Given relation $F A \leftarrow A$ (a so-called F-coalgebra), we say that relation $A \leftarrow R A$ is an F-invariant for S iff

$$S \cdot R \subseteq F R \cdot S$$

$$A \xrightarrow{S} FA \qquad F R \supseteq A$$

$$A \xleftarrow{R} A \xrightarrow{S} FA$$

(12)
Invariants and projections

As an upper adjoint in a Galois connection,

- \(\兴起_c \) is monotonic — thus simple proofs such as

 \[\Phi \text{ is an invariant} \]

 \[\equiv \ \{ \text{PF-definition of invariant} \} \]

 \[\Phi \subseteq \兴起_c \Phi \]

 \[\Rightarrow \ \{ \text{monotonicity} \} \]

 \[\兴起_c \Phi \subseteq \兴起_c (\兴起_c \Phi) \]

 \[\equiv \ \{ \text{PF-definition of invariant} \} \]

 \[\兴起_c \Phi \text{ is an invariant} \]

- \(\兴起_c \) distributes over conjunction, that is PF-equality

 \[\兴起_c (\Phi \cdot \Psi) = (\兴起_c \Phi) \cdot (\兴起_c \Psi) \]

 holds, etc
What about Milner’s original definition?

Milner’s definition is recovered via

- the power-transpose relating binary relations and set-valued functions,

\[f = \Lambda R \equiv R = \in \cdot f \quad (13) \]

where \(A \xleftarrow{\in} \mathcal{P}A \) is the membership relation.

- the powerset relator:

\[\mathcal{P}R = (\in \setminus (R \cdot \in)) \cap ((\in^\circ \cdot R) / (\in^\circ)) \quad (14) \]

which unfolds to an elaborate pointwise formula:

\[Y(\mathcal{P}R)X \equiv \langle \forall a : a \in Y : \langle \exists b : b \in X : a R b \rangle \rangle \wedge \ldots \text{etc} \]
Motivation
Bisimulations
Reynolds arrow
Invariants
Summary
Proof

Calculation of Milner’s definition

c(\mathcal{P}R \leftarrow R)d
\equiv \{ \text{powerset coalgebras uniquely transpose relations} \}
(\Lambda S)(\mathcal{P}R \leftarrow R)(\Lambda U)
\equiv \{ \text{Reynolds} \}
(\Lambda S) \cdot R \subseteq (\mathcal{P}R) \cdot (\Lambda U)
\equiv \{ (14) \}
(\Lambda S) \cdot R \subseteq ((\in \setminus (R \cdot \in)) \cap ((\in^\circ \cdot R)/(\in^\circ))) \cdot (\Lambda U)
\equiv \{ \text{distribution since } \Lambda U \text{ is simple} \}
(\Lambda S) \cdot R \subseteq (\in \setminus (R \cdot \in)) \cdot (\Lambda U) \land (\Lambda S) \cdot R \subseteq ((\in^\circ \cdot R)/(\in^\circ)) \cdot (\Lambda U)
\equiv \{ \text{“al-djabr” rule (composition/division) and power transpose} \}
Calculation of Milner’s definition

\[S \cdot R \subseteq R \cdot U \land (\Lambda S) \cdot R \subseteq ((\infty \cdot R)/(\infty)) \cdot (\Lambda U) \]

\[\equiv \{ \text{take converses; “al-djabr” (functions)} \} \]

\[S \cdot R \subseteq R \cdot U \land (\Lambda U) \cdot R^\circ \subseteq ((\infty \cdot R)/(\infty))^\circ \cdot (\Lambda S) \]

\[\equiv \{ \text{divisions and power transpose} \} \]

\[S \cdot R \subseteq R \cdot U \land U \cdot R^\circ \subseteq R^\circ \cdot S \]

Obs:

- Matteo Vaccari [6] infers the same by direct PF-transforming Milner’s original definition
- We obtain the same result by instantiating Jacobs’ definition to the power relator.
Follow up

- Further modal operators, for instance $\Box \Psi$ — henceforth Ψ — usually defined as the largest invariant at most Ψ:

$$\Box \Psi = \langle \bigcup \Phi : : \Phi \subseteq \Psi \cap \circ_c \Phi \rangle$$

which shrinks to a greatest (post)fix-point

$$\Box \Psi = \langle \nu \Phi : : \Psi \cdot \circ_c \Phi \rangle$$

where meet (of coreflexives) is replaced by composition, as this paves the way to agile reasoning

- Properties calculated by PF-fixpoint calculation

- etc (currently writing a paper on this)
Summary

- Pointfree / pointwise dichotomy: PF is for reasoning in-the-large, PW is for the small
- Back to basics: need for computer science theory “refactoring”
- Rôle of PF-patterns: clear-cut expression of complex logic structures once expressed in less symbols
- Rôle of PF-patterns: much easier to spot synergies among different theories
- Coalgebraic approach in a relational setting: a win-win approach while putting together coalgebras (functions) + relators (relations).
- Also related: proof obligations on state invariants in VDM discharged by PF- calculation [5].
Annex — Calculation of (10)

Still need to calculate rule

\[
\text{pair } (r, s) \text{ is a tabulation}
\]

\[
\Downarrow
\]

\[
(r \cdot s^\circ) \leftarrow (f \cdot g^\circ) = (r \leftarrow f) \cdot (s \leftarrow g)^\circ
\]

Our approach structures itself in a number of (generic) auxiliary results. First of all, and thanks to (8), only the “fission” part of the consequent of (10)

\[
(r \cdot s^\circ) \leftarrow (f \cdot g^\circ) \subseteq (r \leftarrow f) \cdot (s \leftarrow g)^\circ
\]

calls for evidence which, for all suitably typed functions \(c \) and \(d \), equivales

\[
c \cdot f \cdot g^\circ \subseteq r \cdot s^\circ \cdot d \ \Rightarrow \ \langle \exists \ k : : \ c(r \leftarrow f)k \land d(s \leftarrow g)k \rangle
\]
\[c \cdot f \cdot g^\circ \subseteq r \cdot s^\circ \cdot d \implies \langle \exists k : : c(r \leftarrow f)k \land d(s \leftarrow g)k \rangle \]

\[\equiv \{ \text{“al-djabr” and Reynolds arrow} \} \]

\[c \cdot f \subseteq r \cdot s^\circ \cdot d \cdot g \implies \langle \exists k : : c \cdot f = r \cdot k \land d \cdot g = s \cdot k \rangle \]

This, in turn, is an instance of

\[x \subseteq r \cdot s^\circ \cdot y \implies \langle \exists k : : x = r \cdot k \land y = s \cdot k \rangle \]

\[\equiv \{ \text{“al-djabr” and split-universal, followed by split-fusion} \} \]

\[x \cdot y^\circ \subseteq r \cdot s^\circ \implies \langle \exists k : : \langle x, y \rangle = \langle r, s \rangle \cdot k \rangle \quad (15) \]

for \(x, y := c \cdot f, d \cdot g \), cf. diagram:

\[\begin{align*}
A & \xleftarrow{f} B \xrightarrow{g} C \\
\downarrow{c} & \quad \quad \quad \quad \quad \quad \downarrow{d} \\
D & \xleftarrow{r} E \xrightarrow{s} F \\
\end{align*} \]
On function-split fission

The righthand side of implication (15) is an assertion of *split-fission*, an instance of function-fission in general. This can be shown to lead to two concerns:

- the image of \(\langle x, y \rangle \) must be at most the image of \(\langle r, s \rangle \) — \(\langle r, s \rangle \) “at least as surjective as” \(\langle x, y \rangle \)
- \(\langle r, s \rangle \) must be injective “relative” to \(\langle x, y \rangle \).

Concerning the former, we are happy to realize that it exactly matches the antecedent of (15):

\[
\text{img} \langle x, y \rangle \subseteq \text{img} \langle r, s \rangle \\
\equiv \quad \{ \text{split image transform, see below} \} \\
x \cdot y^\circ \subseteq r \cdot s^\circ
\]
On function-split fission

Concerning the latter, we go stronger than required in forcing $\langle r, s \rangle$ to be everywhere-injective:

$$\ker \langle r, s \rangle \subseteq id$$

$$\equiv \{ \text{kernels of splits ; kernels of functions are reflexive} \}$$

$$\ker r \cap \ker s = id$$

This is equivalent to saying that pair r, s is a tabulation: thus the side condition of (10).

□
Divisibility relation on functions

\(f \div g \) iff there is a \(k \) such that

\[g = f \cdot k \] \hspace{1cm} (16)

holds. □

Of course, \(g \div g \) holds (\(k = id \)) and \(id \div g \) holds (\(k = g \)).

In general, to establish \(f \div g \) it is enough to find a \textit{functional} solution \(k \) to equation (16).

Clearly, a \textit{relational} upperbound for \(k \) always exists, \(f^\circ \cdot g \), cf.
Divisibility relation on functions

\(f \div g \) iff there is a \(k \) such that

\[
g = f \cdot k
\] \hspace{1cm} (16)

holds. \(\square \)

Of course, \(g \div g \) holds (\(k = id \)) and \(id \div g \) holds (\(k = g \)).

In general, to establish \(f \div g \) it is enough to find a functional solution \(k \) to equation (16).

Clearly, a **relational** upperbound for \(k \) always exists, \(f^\circ \cdot g \), cf.
On function fission

\[g = f \cdot k \]
\[\equiv \{ \text{equality of functions} \} \]
\[f \cdot k \subseteq g \]
\[\equiv \{ \text{“al-djabr”} \} \]
\[k \subseteq f^\circ \cdot g \]

Let us find conditions for such a (maximal) solution \(f^\circ \cdot g \) to be a function: it must be entire

\[id \subseteq (f^\circ \cdot g)^\circ \cdot f^\circ \cdot g \]
\[\equiv \{ \text{“al-djabr” ; definition of image} \} \]
\[\text{img } g \subseteq \text{img } f \]
On function fission

and simple:

\[f^\circ \cdot g \cdot (f^\circ \cdot g)^\circ \subseteq id \]

\[\equiv \{ \text{converses} \} \]

\[f^\circ \cdot g \cdot g^\circ \cdot f \subseteq id \]

So, for \(f \) divides \(g \) wherever

- \(f \) at least as surjective as \(g \) and
- \(f \) “injective within the image (range) of” \(g \).

Last condition back to points: for all \(a, b \)

\[\langle \exists \ c : : \ f \ a = g \ c = f \ b \rangle \Rightarrow a = b \]
Images of splits

Generic fact for calculating with images of splits:

\[\text{img} \langle R, S \rangle \subseteq \text{img} \langle U, V \rangle \equiv R \cdot S^\circ \subseteq U \cdot V^\circ \quad (17) \]

Calculation:

\[\text{img} \langle R, S \rangle \subseteq \text{img} \langle U, V \rangle \equiv \{ \text{switch to conditions} \} \]
\[\langle R, S \rangle \cdot !^\circ \subseteq \langle U, V \rangle \cdot !^\circ \]
\[\equiv \{ \text{“split twist” rule (18)} \} \]
\[\langle R, ! \rangle \cdot S^\circ \subseteq \langle U, ! \rangle \cdot V^\circ \]
\[\equiv \{ (19) \text{ thanks to } \!\text{-natural} \} \]
\[\langle id, ! \rangle \cdot R \cdot S^\circ \subseteq \langle id, ! \rangle \cdot U \cdot V^\circ \]
\[\equiv \{ \langle id, f \rangle \text{ is injective for any } f, \text{ thus left-cancellable} \} \]
\[R \cdot S^\circ \subseteq U \cdot V^\circ \]
Again useful

“Split twist” rule:

$$\langle R, S \rangle \cdot T \subseteq \langle U, V \rangle \cdot X \equiv \langle R, T^\circ \rangle \cdot S^\circ \subseteq \langle U, X^\circ \rangle \cdot V^\circ$$ (18)

Conditional split-fusion:

$$\langle R, S \rangle \cdot T = \langle R \cdot T, S \cdot T \rangle \iff R \cdot (\text{img} \ T) \subseteq R \lor S \cdot (\text{img} \ T)$$ (19)
Motivation

Bart Jacobs. Introduction to Coalgebra. Towards Mathematics of States and Observations.
Draft Copy. Institute for Computing and Information Sciences, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.

J.N. Oliveira.
Slides available from the author’s website.

M. Vaccari.
Calculational derivation of circuits, 1998.